• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

JLab E12-14-012 (e,e'p) cross section measurements for Ar and Ti

Gu, Linjie 01 July 2021 (has links)
In recent years, many high precision experiments were carried aiming to improve the accuracy on the measurements of the neutrino oscillation parameters. One of the main source of uncertainty for neutrino oscillation experiments is due to the lack of a comprehensive theoretical description of neutrino-nucleus interactions. The US Deep Underground Neutrino Oscillation Experiments (DUNE) will deploy a series of detectors using Liquid Argon Time Projection Chambers (LArTPCs). A fully consistent parameter-free theoretical neutrino-nucleus scattering model on argon does not exist. The first step towards constructing a nuclear model will be to determine the energy and momentum distribution of protons and neutrons inside the argon nucleus. The JLab E12-14-012 experiment performed at Jefferson Laboratory in Newport News, Virginia, ran in 2017 and will provide such measurements in Argon and Titanium using electron scattering (e,e'p). The data collected by the experiment covers a wide range of energy transfers and also includes several other targets like aluminum and carbon. This Ph.D. thesis will present details of the JLab E12-14-012 experiment, together with first data analysis results of the exclusive (e,e'p) data on Argon and Titanium. / Doctor of Philosophy / Neutrino, a tiny, nearly massless particle was discovered about one hundred years ago. Neutrinos are everywhere around us. If you put your hands under the sunlight, each second, there will be about one billion neutrinos pass through them. As the second most abundant particle in the universe, it is extremely important to study neutrinos as they affect many fundamental aspects of our lives. For examples, neutrinos could help us study the nucleons' structure, and how the matter evolved from one particle to many. Since neutrinos are produced in nuclear fusion processes from the sun and stars, we could also understand the sun and universe better by studying the property of neutrinos. Neutrinos have three flavors, and they could change flavors through neutrino oscillation. Measuring the neutrino oscillation parameters is one of the priority tasks for the physics society. Lots of experiments were carried aiming to enhance the understanding of neutrinos and improve the neutrino oscillation measurements accuracy. The most exciting and famous one is the Deep Underground Neutrino Experiment (DUNE) that will be carried in Fermilab. DUNE is an accelerator based experiment that will use Argon as the neutrino target to study the neutrino oscillation. In order to improve the measurement accuracy of the oscillation parameters for the DUNE, a well defined theoretical model for neutrino interaction on Argon is needed. Thus, the JLab E12-14-012 experiment was performed in Hall A at Jefferson Lab in Newport, News, VA to help people get ready for this through electron scattering. The primary goal of this experiment is to measure the electron-nucleus interaction through (e,e$^\prime$p) reactions and further develop a electron-nucleus model to be used in the future neutrino experiments. This thesis will present an overview of the experimental setup and results from the data analysis.
2

Measurement of the (e,e') cross section for 12C, 48Ti, 27Al and 40Ar

Dai, Hongxia 25 September 2019 (has links)
In the upcoming deep underground neutrino experiment (DUNE), Liquid Argon Time Projection Chambers (LArTPCs) will be used as the detector technology, and argon will be used as the nuclear target. In order to reduce the systematic uncertainties on the extracted oscillation parameters, a more precise description of the argon nuclear structure is needed. Electron scattering has been one of the most powerful methods of studying the nuclear structure of a target. Therefore we performed an electron scattering experiment E12-14- 012 in Hall A at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). In the E12-14-012 experiment, we collected data for the inclusive (e,e′) and exclusive (e,e′p) processes for a variety of targets (argon, titanium, aluminum, carbon) at a wide range of kinematics. This thesis presents the measurements of the double differential cross sections for carbon, titanium, aluminum and argon at beam energy E = 2.222 GeV and scattering angle θ = 15.541◦ / Doctor of Philosophy / In the upcoming deep underground neutrino experiment (DUNE), Liquid Argon Time Projection Chambers (LArTPCs) will be used as the detector technology, and argon will be used as the nuclear target. In order to reduce the systematic uncertainties on the extracted oscillation parameters, a more precise description of the argon nuclear structure is needed. Electron scattering has been one of the most powerful methods of studying the nuclear structure of a target. Therefore we performed an electron scattering experiment E12-14- 012 in Hall A at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). In the E12-14-012 experiment, we collected data for the inclusive (e,e′ ) and exclusive (e,e′p) processes for a variety of targets (argon, titanium, aluminum, carbon) at a wide range of kinematics. This thesis presents the measurements of the double differential cross sections for carbon, titanium, aluminum and argon at beam energy E = 2.222 GeV and scattering angle θ = 15.541◦ .
3

Investigation of the Effects of Invisible Neutrino Decay at the Proposed ESSnuSB Experiment / Undersökning av Osynliga Neutrinosönderfall vid det Föreslagna ESSnuSB Experimentet

Kempe, Daniel January 2021 (has links)
This thesis studies neutrino oscillations at the proposed ESSnuSB experiment and the effects of invisible decay, where the neutrino mass states are assumed to be able to decay, on the planned measurements and the physics potential for this experiment to detect neutrino decays. This is accomplished by simulating a combined scenario of neutrino oscillations and invisible neutrino decay. It is found that the ESSnuSB experiment would be able to put a bound on the decay parameter $\tau_3 / m_3 = 2.64 (1.68) \times 10^{-11}$~s/eV for the baseline option $360 (540)$~km at $3\sigma$. Further, the effect of invisible neutrino decay on measurements of CP-violation and the precision measurements of $\delta_{\mathrm{CP}}$ for both baseline options are investigated. The results show that the effect is not significant in any case for CP-violation measurements. A significant difference in the precision measurements of $\delta_{\mathrm{CP}}$ is found only when decay is assumed to exist but is not accounted for in the theoretical model. / Det här arbetet undersöker neutrinooscillationer vid det föreslagna experimentet ESSnuSB och ett nytt scenario med osynligt sönderfall av neutriner, där neutriner antas sönderfalla till partiklar som inte växelverkar. Arbetet undersöker hur väl ESSnuSB experimentet kan skilja en modell med neutrinosönderfall från Standardmodellen för neutriner utan sönderfall och hur experimentets andra tester påverkas av neutrinosönderfall. Studien har genomförts genom att simulera en kombinerad modell av neutrinooscillationer och neutrinosönderfall för ESSnuSB-experimentet. Analysen visar att ESSnuSB-experimentet skulle kunna sätta en $3\sigma$-gräns på sönderfallsparametern $\tau_3 / m_3 = 2.64 (1.68) \times 10^{-11}$~s/eV för baslinjelängden $360 (540)$~km. Vidare så studeras hur neutrinosönderfall påverkar mätningar av CP-symmetribrott och precisionsmätning av parametern $\delta_{\mathrm{CP}}$ för båda baslinjelängderna. Resultaten visar att påverkan av neutrinosönderfall på mätningar av CP-symmetribrott är liten. En signifikant skillnad i precisionsmätning av $\delta_{\mathrm{CP}}$ kan ses enbart då neutrinosönderfall antas sant men inte inkluderas i den teoretiska modellen.

Page generated in 0.1651 seconds