• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 30
  • 22
  • 7
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 243
  • 132
  • 108
  • 82
  • 36
  • 35
  • 27
  • 24
  • 22
  • 22
  • 22
  • 17
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Neuronal Nicotinic Receptor Dynamics in Medial Geniculate Body Neurons of Young and Aged Fischer Brown Norway Rats

Sottile, Sarah Yvonne 01 August 2017 (has links)
The medial geniculate body (MGB) is the thalamic nucleus situated between the inferior colliculus (IC) and auditory cortex (AC) in the ascending auditory pathway. It has classically been thought of as a relay station for auditory stimuli; however, we now know that is capable of significantly influencing incoming auditory information. As aging occurs, there is a loss of auditory signal fidelity as well as a disruption in the accurate coding of acoustic information. In order to compensate for the age-related loss of auditory signal quality, additional cortical resources play a role in knowledge-based optimization of input. This top-down processing is mediated in part by cholinergic systems, which direct attention to relevant incoming sensory information. The primary cholinergic input to the MGB is a large cholinergic projection from the pontomesencephalic tegmentum. The PMT is a brainstem structure composed of the pedunculopontine nucleus and laterodorsal tegmental nuclei. These structures provide acetylcholine (ACh) to the auditory thalamus and midbrain thereby playing a role in sustaining attention, sensory gating, and arousal. Acetylcholine may then act at pre- and postsynaptic receptors at the level of MGB and function to assign salience to auditory stimuli. The central goal of these studies is to examine the location of nAChRs in the local MGB circuitry, their subunit composition, physiology, and how these properties are impacted with age. We have found that ACh produces significant excitatory postsynaptic actions on young MGB neurons, likely mediated by β2-containing heteromeric nAChRs. Use of the β2-selective nAChR antagonist, dihydro-β-erythroidine, suggests that loss of cholinergic efficacy may also be due to an age-related subunit switch from high affinity β2-containing nAChRs to low affinity β4-containing nAChRs, in addition to a loss of total nAChR number. This age-related nAChR dysfunction may partially underpin the attentional deficits which contribute to the loss of speech understanding in the elderly. Activation of presynaptic nAChRs potentiated responses evoked by stimulation of excitatory corticothalamic terminals and inhibitory tectothalamic terminals. Conversely, application of ACh appeared to have no consistent effects on paired-pulse responses evoked from stimulation of excitatory tectothalamic terminals and inhibitory projections from the thalamic reticular nucleus. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were attenuated by aging. The present findings suggest that the increased output from the cholinergic pedunculopontine neurons onto MGB neurons following presentation of difficult to identify stimuli or arousal increases the strength of tectothalamic inhibitory projections likely improving signal-to-noise ratio and enhancing signal detection, while increasing gain on corticothalamic excitatory signals facilitating top-down identification of the unknown stimulus. Thus, cholinergic inputs to MGB are positioned to maximize sensory processing by dynamically adjusting both top-down and bottom-up mechanisms in conditions of attention/arousal.
32

Mapping the Allosteric Pathway Leading from a Mutation in the Nicotinic Acetylcholine Receptor to a Congenital Myasthenic Syndrome

Domville, Jaimee Allison January 2017 (has links)
The peripheral and highly lipid-exposed M4 α-helix, although distant from the agonist binding site, channel gate, and other important gating structures, is involved in modulating function of the nicotinic acetylcholine receptor. M4 "senses" changes in the surrounding lipid environment and may consequently affect receptor function by altering specific interactions between the M4 C-terminus and the Cys-loop. An example of this lipid sensing ability is demonstrated by a lipid-facing Cys418 to Trp substitution on αM4 (αM4 C418W) of the muscle-type receptor, which subtly alters protein-lipid interactions and potentiates channel function 16-fold, leading to a slow-channel congenital myasthenic syndrome. Through the use of mutational studies and mutant cycle analysis, I determine that, contrary to previous studies, M4–Cys-loop interactions are not critical to wild-type muscle-type receptor function, nor are they involved in C418W-induced potentiation. Instead, C418W potentiates channel activity by enhancing local M4-M1 interactions mediated by three polar side-chains, which are absolutely critical to potentiation. I show that altered M4-M1 interactions are ultimately translated to two important gating structures, which work in tandem to stabilize the open conformation of the receptor. These studies highlight how altered protein-lipid interactions can affect channel function and contribute to our understanding of the underlying gating mechanism of the muscle-type receptor.
33

Cloning, Expression and Functional Analysis of the Zebrafish Neuronal Nicotinic Acetylcholine Receptor

Zirger, Jeffrey M. 05 August 2003 (has links)
No description available.
34

Nicotinic transmission and drugs in anesthesia : neuromuscular blocking agents and propofol : consequences for carotid body function /

Jonsson, Malin, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 5 uppsatser.
35

Nicotinic α7 and α4β2 agonists enhance the formation and retrieval of recognition memory: potential mechanisms for cognitive performance enhancement in neurological and psychiatric disorders

McLean, Samantha L., Grayson, Ben, Marsh, S., Zarroug, S.H.O., Harte, Michael K., Neill, Joanna C. 2015 August 1930 (has links)
Yes / Cholinergic dysfunction has been shown to be central to the pathophysiology of Alzheimer’s disease and has also been postulated to contribute to cognitive dysfunction observed in various psychiatric disorders, including schizophrenia. Deficits are found across a number of cognitive domains and in spite of several attempts to develop new therapies, these remain an unmet clinical need. In the current study we investigated the efficacy of donepezil, risperidone and selective nicotinic α7 and α4β2 receptor agonists to reverse a delay-induced deficit in recognition memory. Adult female Hooded Lister rats received drug treatments and were tested in the novel object recognition (NOR) task following a 6 h inter-trial interval (ITI). In all treatment groups, there was no preference for the left or right identical objects in the acquisition trial. Risperidone failed to enhance recognition memory in this paradigm whereas donepezil was effective such that rats discriminated between the novel and familiar object in the retention trial following a 6 h ITI. Although a narrow dose range of PNU-282987 and RJR- 2403 was tested, only one dose of each increased recognition memory, the highest dose of PNU-282987 (10 mg/kg) and the lowest dose of RJR-2403 (0.1 mg/kg), indicative of enhanced cognitive performance. Interestingly, these compounds were also efficacious when administered either before the acquisition or the retention trial of the task, suggesting an important role for nicotinic receptor subtypes in the formation and retrieval of recognition memory. / This work was conducted at the University of Bradford and was funded by b-neuro. However all our recent studies mentioned in the discussion section have been conducted at the University of Manchester (UoM), and funded by b-neuro, Autifony, Innovate UK (formerly TSB) and UoM
36

Tyrosine Kinase and Protein Kinase A Modulation of α7 Nicotinic Acetylcholine Receptor Function on Layer 1 Cortical Interneurons

Komal, Pragya 18 December 2014 (has links)
Nicotinic acetylcholine receptors (nAChRs) are a major class of ligand-gated ion channels in the brain, with the α7 subtype of nAChRs playing an important role in attention, working memory and synaptic plasticity. Alterations in expression of α7 nAChRs are observed in neurological disorders including schizophrenia and Alzheimer’s disease. Therefore, understanding the fundamentals of how α7 nAChRs are regulated will increase our comprehension of how α7 nAChRs influence neuronal excitability, cognition and the pathophysiology of various neurological disorders. The purpose of this thesis was to investigate how protein kinases modulate the function and trafficking of α7 nAChRs in CNS neurons. In chapter 2, I describe a novel fast agonist applicator that I developed to reliably elicit α7 nAChR currents in both brain slices and cultured cells. In chapter 3, I examined whether an immune protein in the brain, the T-cell receptor (TCR), can modulate α7 nAChR activity. Activation of TCRs decreased α7 nAChR whole-cell recorded currents from layer 1 prefrontal cortical (PFC) neurons. TCR attenuated α7 nAChR currents through the activation of Fyn and Lck tyrosine kinases, which targeted tyrosine 442 in the M3-M4 cytoplasmic loop of α7. The mechanisms of the attenuated α7 current were contributed by a TCR mediated decrease in surface receptor expression and an attenuation of the α7 single-channel conductance. TCR stimulation also resulted in a decrease in neuronal excitability by negatively modulating α7 activity. In chapter 4, I tested whether PKA can modulate α7 nAChR function in CNS neurons. The pharmacological agents PKA agonist 8-Br-cAMP and PKA inhibitor KT-5720, as well as over-expressing dominant negative PKA and the catalytic subunit of PKA, demonstrated that activation of PKA leads to a reduction of α7 nAChR currents in HEK 293T cells and layer 1 cortical interneurons. Serine 365 of the M3-M4 cytoplasmic domain of α7 was necessary for the PKA modulation of α7. The mechanism of down-regulation in α7 receptor function was due to decreased surface receptor expression but not alterations in single-channel conductance nor gating kinetics. The results of this thesis demonstrate that α7 nAChRs constitute a major substrate for modulation via TCR activated tyrosine kinases and the cyclic AMP/PKA pathway. / Graduate / kpragya2000504@gmail.com
37

Σχεδιασμός, έκφραση και χαρακτηρισμός τμημάτων των α7 και α9 νικοτινικών υποδοχέων, κατάλληλων για δομικές μελέτες

Ζαρκάδας, Ελευθέριος 02 April 2014 (has links)
Οι α7 και α9 υπομονάδες των νικοτινικών υποδοχέων ακετυλοχολίνης (nAChRs) είναι οι μόνες, ανάμεσα σε μια μεγάλη ποικιλία υπομονάδων του ανθρώπινου nAChR, που σχηματίζουν ομοπενταμερείς υποδοχείς. Για την θεραπεία διαφόρων νευρολογικών διαταραχών αλλά και άλλων ασθενειών, όπου εμπλέκονται οι α7 και α9 nAChRs, απαιτούνται φαρμακευτικές ουσίες που θα στοχεύουν ειδικά σε έναν υπότυπο των nAChRs. Για τον σχεδιασμό τέτοιων φαρμάκων είναι ουσιώδης η διαλεύκανση σε ατομικό επίπεδο της δομής του nAChR. Εντούτοις, η κρυστάλλωση ολόκληρων των διαμεμβρανικών υποδοχέων, αλλά ακόμη και η έκφραση και απομόνωσή τους, σε βαθμό που να επιτρέπει δομικές μελέτες, έχει αποδειχθεί δύσκολος στόχος. Η δυσκολία έγκειται κυρίως στην παρουσία υδρόφοβων διαμεμβρανικών περιοχών και στην μεγάλη ενδοκυττάρια περιοχή που θεωρείται ευκίνητη και ότι δεν έχει σταθερή διαμόρφωση. Στο πλαίσιο αυτό, στοχεύσαμε στην παραγωγή τμημάτων των α7 και α9 υπομονάδων του nAChR, που να είναι κατάλληλα για αναλυτικές δομικές μελέτες, σχεδιάζοντας κατασκευές για την έκφραση των εξωκυτταρικών περιοχών των δύο υπομονάδων ή και κολοβών διαμεμβρανικών μορφών της α7 υπομονάδας. Σε αυτές έχουν απαλειφθεί είτε τμήματα της μεγάλης ενδοκυτταρικής περιοχής, είτε ολόκληρη αυτή η περιοχή και μεγάλα τμήματα της διαμεμβρανικής περιοχής. Στο παρελθόν, είχε εκφραστεί η α7-ΕΚΠ στο ετερόλογο σύστημα έκφρασης Pichia pastoris και είχε οδηγήσει σε συσσωματώματα μεγάλου μοριακού βάρους, ενώ η έκφραση ενός μεταλλάγματος της α7-ΕΚΠ έδειξε σημαντική βελτίωση της υδροφιλικότητας του μορίου και σχηματισμό ολιγομερών κυρίως πενταμερών μορίων (Zouridakis et al. 2009). Σε αυτήν την εργασία, έχουμε επιτύχει να απομονώσουμε τα σχηματιζόμενα πενταμερή μόρια αυτού του μεταλλάγματος, εκμεταλλευόμενοι την ιδιότητα τους να εκλούονται σε μεγάλο εύρος συγκέντρωσης ιμιδαζολίου, κατά την χρωματογραφία συγγένειας. Ακόμη, η ενζυμική απογλυκοζυλίωση του μεταλλάγματος αυτού, βοήθησε στην περαιτέρω μείωση της ετερογένειας των απομονωμένων πενταμερών μορίων. Αν και ο αρχικός έλεγχος συνθηκών κρυστάλλωσης των γλυκοζυλιωμένων πενταμερών μορίων οδήγησε στον σχηματισμό μικροκρυστάλλων, δεν στάθηκε δυνατή η βελτιστοποίηση της ανάπτυξής τους. Η έκφραση της αγρίου τύπου εξωκυτταρικής περιοχής της α9 υπομονάδας του ανθρώπινου nAChR (α9wt) στο ετερόλογο σύστημα έκφρασης P. pastoris, οδήγησε στην παραγωγή κυρίως μονομερών μορίων που διαχωρίζονται εύκολα από τα σχηματιζόμενα ολιγομερή. Η μονομερής μορφή της α9wt έδειξε αξιοσημείωτη διαλυτότητα, σταθερότητα και ομοιογένεια καθώς και ικανότητα πρόσδεσης της α-μπουγκαροτοξίνης, έναν ειδικό ανταγωνιστή του μυικού και των ομοπενταμερών νευρικών nAChRs. Προκειμένου να υποβοηθηθεί η συναρμολόγηση των εκφραζόμενων α7 και α9 ΕΚΠ προς τον σχηματισμό πενταμερών μορίων, σχεδιάσαμε μεταλλάξεις που στηρίχθηκαν σε τρισδιάστατα μοντέλα ομολογίας (3D homology modelling) αυτών, χρησιμοποιώντας ως πρότυπο την κρυσταλλική δομή της ομόλογης, διαλυτής πρωτεΐνης δεσμεύσεως της ακετυλοχολίνης (AChBP) από το μαλάκιο Lymnaea stagnalis. Οι μεταλλαγές αυτές έγιναν είτε σε υδρόφοβα επιφανειακά αμινοξικά κατάλοιπα, με στόχο να αυξήσουμε την υδροφιλικότητα του μορίου, είτε σε κατάλοιπα που εντοπίζονται στις διεπιφάνειες μεταξύ δύο πρωτομερών, ώστε να ενισχύσουμε τις διαμοριακές αλληλεπιδράσεις και να υποβοηθήσουμε την συναρμολόγηση τους προς πενταμερή μόρια. Τα προκύπτοντα μεταλλάγματα έχουν ταύτιση αμινοξικής αλληλουχίας 70-95% με την αντίστοιχη του αγρίου τύπου και σε ορισμένες περιπτώσεις η έκφρασή τους στην P. pastoris οδήγησε στον σχηματισμό αλλά και την απομόνωση πενταμερών μορίων. Η σάρωση των μεταλλαγμάτων απέτυχε στην ανεύρεση κάποιας συνθήκης κρυστάλλωσής τους. Ωστόσο, ο αρχικός έλεγχος συνθηκών κρυστάλλωσης των μονομερών μορίων της α9wt είχε ως αποτέλεσμα τον προσδιορισμό διαφορετικών συνθηκών όπου σχηματίζονται πολλαπλοί κρύσταλλοι, τόσο για την γλυκοζυλιωμένη, όσο και την απογλυκοζυλιωμένη μορφή της. Επιπλέον, η βελτιστοποίηση αυτών των κρυστάλλων στην περίπτωση της γλυκοπρωτεΐνης, οδήγησε στο σχηματισμό μονοκρυστάλλων, που περιθλούν ακτίνες-Χ σε ικανοποιητική ανάλυση, καθιστώντας αυτούς τους κρυστάλλους ως υποσχόμενο υλικό για την επίλυση της δομής της άγριου τύπου α9 ΕΚΠ. Τέλος, η έκφραση στην κυτταρική σειρά εντόμων Sf9 με το σύστημα των βακιλοϊών της ολόκληρης α7 υπομονάδας του nAChR και των «κολοβών» διαμεμβρανικών μορφών της οδήγησε στην ορθή στόχευση των σχηματιζόμενων υποδοχέων στην κυτταροπλασματική μεμβράνη, ενώ οι φαρμακολογικές τους ιδιότητες προσεγγίζουν αυτές του φυσικού α7 υποδοχέα. Παρά το γεγονός ότι η έκφραση των κατασκευών αυτών είχε χαμηλή απόδοση και παρά τις δυσκολίες διαλυτοποίησης και απομόνωσής τους, ανάλυση με χρωματογραφία μοριακού αποκλεισμού, για τουλάχιστον δύο από τα διαμεμβρανικά μεταλλάγματα, δείχνει ότι οι διαλυτοποιημένες πρωτεΐνες έχουν σχηματίσει έναν πληθυσμό ολιγομερών της πρωτεΐνης ο οποίος πιθανότατα αντιστοιχεί σε πενταμερή μόρια. Τα παραπάνω, σε συνδυασμό με την απουσία της εύκαμπτης ενδοκυττάριας περιοχής, καθιστούν αυτά τα α7 μεταλλάγματα, εφόσον ξεπεραστούν οι δυσκολίες της απόδοσης της έκφρασης και της απομόνωσης τους, κατάλληλα για λειτουργικές και δομικές μελέτες. / The neuronal α7 and α9 subunits of the nicotinic acetylcholine receptor (nAChR) are the only amongst the known human nAChR subunits to form homopentamers, with five cholinergic ligand-binding sites. Elucidation of their crystal structure is essential in order to design highly specific drugs for treatment of several neurological diseases and disorders related to them and will serve as the prototype for understanding the structure of all other members of the ligandgated ion channel superfamily. Crystallisation of the intact receptors is a difficult task to fulfil, partially due to their hydrophobic transmembrane regions. Therefore, we aim at the expression of crystallisable human α7 and α9 extracellular domains (ECDs) or truncated α7 forms lacking either only their large and probably unordered intracellular domain or large parts of its transmembrane domain. Regarding the α7 ECD, expression of the wild type form in yeast Pichia pastoris led into formation of aggregates (Avramopoulou et al. 2004). Yet, a previously described mutant of this ECD (α7m10, Zouridakis et al. 2009) succeeded in the formation of oligomers, mostly corresponding to pentamers, due to improved solubility and subunit assembly of this mutant. In this study, we managed to isolate apparently pentameric assemblies of the various expressed oligomeric states, by optimizing its first-step purification procedure (metal affinity chromatography), using a narrow stepwise increase of imidazole concentrations. In order to further improve the protein homogeneity, we proceeded to the isolation of its deglycosylated pentameric form. The relatively low polydispersity of both the glycosylated and deglycosylated α7m10 ECDs, allowed for crystallization trials, which have resulted in microcrystallic formations. Further optimization of these microcrystals failed. As to the α9 ECD, expression of the wild type form in yeast Pichia pastoris led to the formation of both monomers and a variety of oligomers. The monomeric α9 ECD showed significant monodispersity, solubility and stability and exhibited binding ability of α- bungarotoxin, a specific nAChR antagonist. In order to facilitate the pentameric assembly and enhance the solubility of these α7 and α9 ECDs, we designed several mutants based on generated 3D homology models, using as template the crystal structure of the homologous soluble molluscan acetylcholine binding protein (AChBP). Several solvent accessible hydrophobic residues were replaced with more hydrophilic ones and some interface-located residues were mutated so as to facilitate the formation of additional inter-subunit interactions. The resulting mutants shared moderate and considerably high sequence identities (70-95%) with the wild type ECDs and in some cases, formation of pentamers was accomplished. Crystallisation screening for mutant ECDs failed in producing any hit. However, the pilot crystallisation trials of monomeric wild-type α9 ECD resulted the formation of plate-like multi crystals for both its glycosylated and deglycosylated forms. Further optimisation of these crystals succeeded in producing single crystals of the glycoprotein, to produce single crystals, which diffracted X-rays to satisfactory resolution, in a home source X-ray generator. Therefore, these crystals seem to be a promising material for solving the wild type α9 ECD structure. The intact and truncated α7 nAChRs under study were expressed in the Sf9/baculovirus system and showed surface receptor expression, while presenting near-native ligand-binding affinities for characteristic nAChR agonists and antagonists. Despite the low expression yield and solubilisation and purification difficulties, gel filtration analysis for at least two truncated mutants revealed the presence of a monodispersed oligomeric population, probably corresponding to pentamers. All these, taken together with the lack of the flexible large intracellular domain, render these α7 mutants, after overcoming the expression yield and purification difficulties, a suitable material for performing both functional and structural studies.
38

NICOTINIC RECEPTOR MODULATION OF DOPAMINE TRANSPORTERS

Middleton, Lisa Sue 01 January 2006 (has links)
The current project examined the ability of nicotine to modulate dopamine transporter (DAT) function. Initial experiments determined the dose-response for nicotine to modulate dopamine (DA) clearance in rat striatum and medial prefrontal cortex (MPFC) using in vivo voltammetry and determined if this effect was mediated by nicotinic receptors (nAChRs). In both striatum and MPFC, nicotine increased DA clearance in a mecamylamine-sensitive manner, indicating nAChR-mediation. The effect of acute nornicotine on DAT function was also determined. In contrast to nicotine, nornicotine in a dose-related manner decreased striatal DA clearance in a mecamylamine-sensitive manner, indicating nAChR mediation. To determine if tolerance developed to the nicotine effect nicotine, separate groups of rats were injected once daily for 5 days with nicotine or saline. DA clearance in striatum and MPFC was determined 24 hrs after the last injection. Nicotine increased DA clearance only 10-15% in the group repeatedly administered nicotine, demonstrating that tolerance developed. To determine if nicotine altered striatal DAT efficiency, following nicotine injection, DAT density and maximal velocity of [3H]DA uptake was determined using [3H]GBR12935 binding and saturation analysis of [3H]DA uptake in rat striatum, respectively. Nicotine did not alter the Bmax or Kd of maximal binding of [3H]GBR12935 binding. However, an increase in Vmax was observed at 10 and 40 min following nicotine injection, suggesting that nicotine increases DAT efficiency. To determine if systemic nicotine enhanced DAT function via an action at nAChRs on striatal DA terminals, [3H]DA uptake was determined in striatum in vitro in the absence or presence of nicotine in the buffer. Nicotine did not alter the Vmax for [3H]DA uptake in vitro, suggesting that the nicotine-induced increase in DAT function observed in vivo is mediated by nAChRs on DA cell bodies or another site which indirectly alters DAT function. To determine if the increase in DAT efficiency was due to increased surface expression of striatal DAT, biotinylation and Western blot analyses were performed. Nicotine did not alter striatal DAT, suggesting that the nicotine-induced increase in DA clearance in vivo and DAT efficiency in vitro is not the result of increased trafficking of this protein to the cell surface.
39

"Receptores nicotínicos de acetilcolina no desenvolvimento da retina de pinto em cultura: modulação por melatonina endógena" / "Nicotinic acetylcholine receptors in the chick retina in culture development: modulation by endogenous melatonin"

Sampaio, Lucia de Fatima Sobral 04 February 2002 (has links)
Receptores nicotínicos da acetilcolina são encontrados na retina de pintos desde o início do desenvolvimento embrionário. As propostas desse trabalho foram caracterizar esses receptores no desenvolvimento de células de retinas embrionárias de pinto com oito dias, em cultura, e investigar se luzindole, um antagonista de receptores de melatonina, interfere com a atividade, distribuição e número desses receptores. Os ensaios funcionais foram feitos através de microfisiometria, método no qual é medido o aumento da velocidade de acidificação do meio extracelular de células em cultura, provocado pela ativação de receptores por agonistas. Os resultados são expressos como o percentual de aumento da velocidade de acidificação do meio extracelular acetilcolina-estimulado sobre a velocidade de acidificação do meio extracelular basal (ECAR % basal). A eficácia da acetilcolina aumentou do quarto dia de cultura para o quinto dia, decaindo ao oitavo dia, sendo bloqueada de modo dependente de concentração por dihidro-β-eritroidina (a partir de 10 µM), ao quarto dia e por α-bungarotoxina (10nM), ao quinto e sexto dia de cultivo, não ocorrendo o inverso. Para os ensaios de ligação, utilizou-se [125I] α-bungarotoxina, e ao quarto dia de cultivo houve maior número de sítios, menor afinidade e maior grau de cooperatividade. Ao quinto dia de cultivo ocorreu o inverso. Foi investigado, por imunocitoquímica, o desenvolvimento da distribuição da imunorreatividade para as subunidades α3 e α8 e ambas foram encontradas em culturas de quatro e seis dias, estando α3 principalmente em corpos neuronais e dendritos proximais e α8 principalmente em prolongamentos. O tratamento crônico com luzindole não interferiu com o padrão de distribuição das subunidades α3 e α8 em culturas de quatro ou seis dias, em nenhum tempo de cultivo. Também não interferiu no número de sítios, na constante de associação e no tempo de equilíbrio da ligação de [125I] α-bungarotoxina, nas culturas cultivadas por cinco dias. Entretanto, a resposta à acetilcolina em culturas de cinco e seis dias foi inibida de modo concentração e tempo dependente por luzindole, sem apresentar somação com a inibição por α-bungarotoxina. Concluiu-se que na cultura de células de retina a eficácia do agonista acetilcolina é dependente do desenvolvimento, se deve principalmente a receptores formados de subunidades α3 e α8, ao quarto e quinto dias de cultivo, respectivamente, e que o bloqueio de receptores de melatonina com luzindole inibe a resposta à acetilcolina somente ao quinto e sexto dias de desenvolvimento, provavelmente, pela inibição de outro sistema de neurotransmissão, localizado nos mesmos neurônios que contém receptores sensíveis a α-bungarotoxina em suas ramificações, como o sistema glutamatérgico. / Nicotinic acetylcholine receptors are expressed in the chick retina very early in embryonic development. The present study aimed to characterize the nicotinic acetylcholine receptors during embryonic chick retinal cell culture development and to investigate if luzindole, a melatonin receptor antagonist, is able to change the activity, distribution, and number of these receptors. The functional assays were done by microphysiometry, a method in which the increasing, agonist-stimulated, extracellular acidification rate is measured in cultured cells. The results are expressed in terms of the percentual of the acetylcholine-stimulated extracellular acidification rate over the basal extracellular acidification rate (% basal ECAR). The acetylcholine efficacy increased from the fourth to the fifth day, diminishing at the eighth culture day, and was inhibited, concentration-dependently, by dihydro-β-erythroidine (starting at 10 µM), in the retinal cells cultured for four days, and by α-bungarotoxin (10nM), in the retinal cells cultured for five and six days. The opposite did not occur. We have used [125I] α-bungarotoxin for the binding assays, and retinal cells cultured for four days presented in these assays a higher maximal-binding, smaller affinity, and higher degree of the cooperativity than retinal cells cultured for five days. Immunocytochemistry was used to characterize the development of the α3 and α8 subunits. Each of these subunits was characteristically distributed throughout the cell, independent of the age of culture. Alpha3 was mainly observed in the perikarya and proximal dendrites, whereas α8 was basically seen in processes. The distribution of the α3 and α8 immunoreactivity was not changed after chronic luzindole treatment. Also, the time of the equilibrium, the association rate, and the number of the [125I] α-bungarotoxin (10nM) binding sites were not different with or without chronic luzindole treatment in cells cultured for five days. However, the acetylcholine efficacy in the retinal cells cultured for five and six days was inhibited by luzindole, an effect that was concentration and time dependent, and that exhibited no summation with the inhibition by α-bungarotoxin. In conclusion, the acetylcholine efficacy is dependent on retinal cell culture development, and it acts mainly through neuronal nicotinic receptors comprising α3 subunits in the fourth day, and α8 subunits in the fifth day. Acetylcholine action is inhibited by melatonin receptor blockage by luzindole only at the fifth and sixth days, probably by inhibition of other receptors located in the same cells that harbor α-bungarotoxin-sensitive receptors, such as glutamate receptors.
40

α7 nicotinic acetylcholine receptors at the glutamatergic synapse

Hammond, Victoria January 2014 (has links)
Nicotinic acetylcholine receptor (nAChR) activation is neuroprotective and nicotine is a cognitive enhancer. Loss of nAChRs, deposition of tau neurofibrillary tangles, cleavage of amyloid precursor protein (APP) and inflammation are well documented in the pathogenesis of Alzheimer’s disease (AD). Sequential cleavage of APP by β- and γ-secretase enzymes generates soluble Aβ peptides, with oligomeric forms of Aβ implicated in both the control of synaptic excitability and dysregulation of synaptic transmission and induction of neuronal death in AD. Aβ production is inhibited by calcium-dependent recruitment of α-secretase, as exemplified by activation of N-methyl-D-aspartate receptors (NMDAR). All neurodegenerative diseases are associated with inflammation, arising from altered homeostasis of the innate immune system, resulting in heightened activation of immune cells and induction of a pro-inflammatory environment. Stimulation of the α7 subtype of nAChR is anti-inflammatory and also enhances cognition and promotes neuronal survival. This work addressed the hypotheses that stimulation of highly calcium-permeable α7nAChR inhibits Aβ production by promoting α-secretase-mediated processing of APP and also modulates inflammatory cellular behaviour of microglia. Thus, this study assessed the role of α7nAChR at glutamatergic synapses, through probing effects on APP processing and phagocytosis in primary cortical neurons and microglia, respectively. Primary cortical neurons expressed functional α7nAChR and glutamate receptors, and through a number of experimental approaches, including immunoblotting and a cleavage reporter assay, results indicated α7nAChR activation with the α7nAChR-selective agonist PNU-282987 and positive allosteric modulator PNU-120596 had no effect on APP and Tau, in contrast to NMDAR activation that significantly modulated these proteins. Data suggest low expression of α7nAChR, coupled with distinct localisation of presynaptic α7nAChR and postsynaptic APP could explain the lack of effect. In addition, primary microglia were highly responsive to lipopolysaccharide and possessed functional α7nAChR that coupled to ERK phosphorylation. Microglial α7nAChR activation promoted neuroprotective phagocytic behaviour, in agreement with the ‘cholinergic anti-inflammatory pathway’. This study supports the hypothesis that α7nAChR are modulators of anti-inflammatory behaviour, thus α7nAChR-selective ligands are viable candidates for the treatment of AD and promoting cognitive enhancement.

Page generated in 0.04 seconds