1 |
O problema do centro-foco para singularidades nilpotentes no plano / The center focus problem for planar nilpotent singularitiesItikawa, Jackson 22 March 2012 (has links)
O estudo dos pontos singulares em campos vetoriais analíticos é um problema quase completamente resolvido. O único caso que ainda permanece insolúvel é o caso monodrômico, em que as órbitas circundam a singularidade. Em sistemas diferenciais analíticos, se p é singularidade monodrômica, então p ou é um centro, ou é um foco. O problema do centro-foco consiste em determinar condições que diferenciem os casos em que p é um foco, daqueles em que p é um centro. O tema central desta dissertação é a investigação do problema do centro-foco em sistemas diferenciais analíticos com singularidade nilpotente. Este problema é bastante estudado, uma vez que ainda não existe um algoritmo eficiente para este caso, tal como ocorre em sistemas com singularidades não degeneradas. Estudamos duas técnicas bastante distintas. A primeira faz uso da teoria das formas normais e aborda o problema da maneira clássica, dividindo-o na investigação da monodromia e no estudo da estabilidade. O outro método investiga os sistemas diferenciais com singularidades nilpotentes como limite de sistemas com singularidades não degeneradas. A fim de avaliarmos sua eficiência e compreendermos as possíveis obstruções envolvidas, aplicamos os métodos a famílias concretas de sistemas diferenciais / The study of singular points in planar analytic vector fields is a problem almost completely solved. The only case that remains open is the monodromic one, in which the orbits turn around the singularity. In analytic differential systems, if p is a monodromic singular point, then p is either a center or a focus. The center-focus problem consists in determining conditions for distinguishing between a center and a focus. The main purpose of this work is the investigation of the center-focus problem in analytic differential systems with nilpotent singular points. This problem is still widely studied, since there is no algorithm for such case, comparable to the Lyapunov method for the case of non-degenerate singularities. We studied two different methods. The first makes use of the normal form theory and deals with the problem in the classic way, splitting it up in two parts: the investigation of the monodromy and the study of the stability. The latter investigates the differential analytic systems with nilpotent singular points as limit of differential systems with nondegenerate singularities. In order to evaluate the efficiency and understand possible obstructions, we applied the two techniques to concrete families of differential systems
|
2 |
O problema do centro-foco para singularidades nilpotentes no plano / The center focus problem for planar nilpotent singularitiesJackson Itikawa 22 March 2012 (has links)
O estudo dos pontos singulares em campos vetoriais analíticos é um problema quase completamente resolvido. O único caso que ainda permanece insolúvel é o caso monodrômico, em que as órbitas circundam a singularidade. Em sistemas diferenciais analíticos, se p é singularidade monodrômica, então p ou é um centro, ou é um foco. O problema do centro-foco consiste em determinar condições que diferenciem os casos em que p é um foco, daqueles em que p é um centro. O tema central desta dissertação é a investigação do problema do centro-foco em sistemas diferenciais analíticos com singularidade nilpotente. Este problema é bastante estudado, uma vez que ainda não existe um algoritmo eficiente para este caso, tal como ocorre em sistemas com singularidades não degeneradas. Estudamos duas técnicas bastante distintas. A primeira faz uso da teoria das formas normais e aborda o problema da maneira clássica, dividindo-o na investigação da monodromia e no estudo da estabilidade. O outro método investiga os sistemas diferenciais com singularidades nilpotentes como limite de sistemas com singularidades não degeneradas. A fim de avaliarmos sua eficiência e compreendermos as possíveis obstruções envolvidas, aplicamos os métodos a famílias concretas de sistemas diferenciais / The study of singular points in planar analytic vector fields is a problem almost completely solved. The only case that remains open is the monodromic one, in which the orbits turn around the singularity. In analytic differential systems, if p is a monodromic singular point, then p is either a center or a focus. The center-focus problem consists in determining conditions for distinguishing between a center and a focus. The main purpose of this work is the investigation of the center-focus problem in analytic differential systems with nilpotent singular points. This problem is still widely studied, since there is no algorithm for such case, comparable to the Lyapunov method for the case of non-degenerate singularities. We studied two different methods. The first makes use of the normal form theory and deals with the problem in the classic way, splitting it up in two parts: the investigation of the monodromy and the study of the stability. The latter investigates the differential analytic systems with nilpotent singular points as limit of differential systems with nondegenerate singularities. In order to evaluate the efficiency and understand possible obstructions, we applied the two techniques to concrete families of differential systems
|
3 |
Correspondance de Springer modulaire et matrices de décompositionJuteau, Daniel 11 December 2007 (has links) (PDF)
In 1976, Springer defined a correspondence making a link between the irreducible ordinary (characteristic zero) representations of a Weyl group and the geometry of the associated nilpotent variety. In this thesis, we define a modular Springer correspondence (in positive characteristic), and we show that the decomposition numbers of a Weyl group (for example the symmetric group) are particular cases of decomposition numbers for equivariant perverse sheaves on the nilpotent variety. We calculate explicitly the decomposition numbers associated to the regular and subregular classes, and to the minimal and trivial classes. We determine the correspondence explicitly in the case of the symmetric group, and show that James's row and column removal rule is a consequence of a smooth equivalence of nilpotent singularities obtained by Kraft and Procesi. The first chapter contains generalities about perverse sheaves with Z_l and F_l coefficients.
|
Page generated in 0.0843 seconds