• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 32
  • 22
  • 10
  • 10
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 171
  • 140
  • 36
  • 34
  • 26
  • 20
  • 19
  • 17
  • 17
  • 17
  • 16
  • 16
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inversions périodiques profondes sur une coupe X du niobate de lithium /

Généreux, Francis, January 2008 (has links) (PDF)
Thèse (Ph. D.)--Université Laval, 2008. / Bibliogr.: f. [118]-127. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
2

Darstellung und Strukturbestimmung von Halogenooxometallaten des Niobs und Tantals mit einwertigen Kationen

Bordinhão, Jairo. January 1999 (has links) (PDF)
Giessen, Universiẗat, Diss., 1999.
3

Engineering ferroelectric domains and charge transport by proton exchange in lithium niobate

Manzo, Michele January 2015 (has links)
Ferroelectrics are dielectric materials possessing a switchable spontaneous polarization, which have attracted a growing interest for a broad variety of applications such as ferroelectric lithography, artificial photosynthesis, random and dynamic access memories (FeRAMs and DRAM), but also for the fabrication of devices for nonlinear optics, etc. All the aforementioned applications rely on the control of the ferroelectric domains arrangement, or the charge distribution and transport. In this regard, the main prerequisite is the engineering of the spontaneous polarization, obtained by reversing its orientation or locally inhibiting it. In the latter case, the interface created by the spatial discontinuity of the spontaneous polarization generates local charge accumulation, which can be used to extend the capabilities of ferroelectric materials. This thesis shows how engineering the spontaneous polarization in lithium niobate (LN) by means of proton exchange (PE), a temperature-activated ion exchange process, can be used to develop novel approaches for ferroelectric domain structuring, as well as fabrication of self-assembled nanostructures and control of ionic/electronic transport in this crystal. In particular, it is shown how the electrostatic charge at PE:LN junctions lying below the crystal surface can effectively counteract lateral domain broadening, which in standard electric field poling hampers the fabrication of ferroelectric gratings for Quasi-Phase Matching with periods shorter than 10 μm. By using such an approach, ferroelectric gratings with periods as small as ~ 8 μm are fabricated and characterized for efficient nonlinear optical applications. The viability of the approach for the fabrication of denser gratings is also investigated.  The charge distribution at PE:LN junctions lying on the crystal surface is modelled and used to drive the deposition of self-assembled nanowires by means of silver photoreduction. Such a novel approach for PE lithography is characterized for different experimental conditions. The results highlight a marked influence of the orientation of the spontaneous polarization, the deposition times, as well as the reactants concentrations and the doping of the substrate with MgO. Based on the fact that proton exchange locally reduces the spontaneous polarization, a quick and non-destructive method for imaging PE regions in lithium niobate with nanoscale resolution is also developed by using Piezoresponse Force Microscopy. Moreover the relative reduction of the piezoelectric d33 coefficient associated to PE is estimated in lithium niobate substrates with and without MgO-doping. Finally, by using advanced Scanning Probe Microscopy techniques, the features of charge transport in PE regions are further investigated with nanoscale resolution. A strong unipolar response is found and interpreted in light of ionic-electronic motion coupling due to the interplay of interstitial protons in the PE regions, nanoscale electrochemical reactions at the tip-surface interface, and rectifying metal-PE junctions. / <p>QC 20150325</p>
4

Investigation par spectroscopie Raman des propriétés photoréfractives et microstructurales de LiNbO3 dopé / Investigation by Raman spectroscopy of the microstructural and photorefractive properties of doped LiNbO3

Mignoni, Sabrina 25 November 2010 (has links)
Le niobate de lithium LiNbO3 (LN) est un excellent matériau pour diverses applications en raison de ses propriétés photoréfractives (PR). Un des enjeux de recherche de ce matériau consiste à réaliser des guides optiques PR performants pour l'optique intégrée. L'objectif de la thèse consiste à déterminer les conditions optimales de réalisation de la diffusion du fer (Fe) dans le LN, par le contrôle de sa microstructure et l'estimation de ses propriétés PR par une seule et même technique, la spectroscopie Raman.Plusieurs échantillons LN:Fe ont été étudiés lors de ce travail. Il s'agit entre autres de contrôler le profil de diffusion du fer, et d'estimer l'influence du traitement oxydant ou réducteur sur les différents cristaux.En effet j'ai pu montrer que la microstructure était modifiée non seulement par l'introduction d'un dopant comme Fe, mais aussi par les divers traitements. J'ai aussi mis en évidence pour la première fois le mécanisme de l'incorporation des ions Fe dans des structures de LN obtenues par diffusion.Par ailleurs, j'ai proposé une nouvelle approche des règles d'activité Raman, qui ainsi peuvent prendre en compte des non linéarités optiques du second ordre, ce qui est en général négligé dans la littérature. J'ai ainsi établi les configurations Raman dans lesquelles, soit les intensités de raies sont amplifiées, soit de nouvelles raies sont activées par un processus non linéaire. Ces prédictions ont été confirmées par des résultats expérimentaux obtenus sur plusieurs échantillons. Enfin, j'ai pu proposer une nouvelle méthode d'estimation de l'efficacité PR permettant de comparer utilement divers échantillons selon leur dopage ou traitement. / Lithium niobate LiNbO3 (LN) is an excellent material for various applications in particular thanks to its photorefractive (PR) properties. One of the research goals for this material consists in performing efficient PR optical waveguides for integrated optics.The objective of the thesis is to determine the optimum performing conditions for the iron (Fe) diffusion in LN, by controling its microstructure and estimating its PR properties with only one technique, Raman spectroscopy.Several LN:Fe samples have been studied within this work. The aim is, among others, to control the iron diffusion profile, and to estimate the influence of the oxidizing or reducing treatment on the different crystals.Indeed I was able to show that the microstructure has been affected not only by the introduction of a dopant as Fe, but also by the various treatments. I showed for the first time the mecanism of Fe ions incorporation in LN structures obtained by diffusion.Otherwise, I proposed a new approach of the Raman activity rules, in the way they can take into account optical nonlinearities of the second order, which is generally neglected in litterature. Thus I have established the Raman configurations where, or the intensities of the lines are enhanced, or new lines are activated by a nonlinear process. These predictions have been confirmed by experimental results obtained on many samples. At last, I was able to propose a new method for the estimation of the PR efficiency, allowing to compare usefully several samples according to their doping or treatments.
5

Photoluminescence polaron dans le niobate de lithium Approche expérimentale et modélisation /

Harhira, Aïssa Guilbert, Laurent January 2007 (has links) (PDF)
Thèse de doctorat : Sciences des matériaux : Physique : Metz : 2007. / Titre provenant de l'écran-titre. Notes bibliographiques. Index.
6

Determination of grating shape and physical mechanisms in lithium niobate holographic recording

Su, Shing-fong 05 1900 (has links)
No description available.
7

Dynamic theory of volume holographic recording and readout in electro-optic crystals

Magnusson, Robert 12 1900 (has links)
No description available.
8

Züchtung und Charakterisierung von SrxBa1-xNb2O6-Kristallen im Bereich von 0,32 [x [0,82

Ulex, Michael. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Osnabrück.
9

Non-collinear second harmonic generation in strontium barium niobate

Tunyagi, Arthur R. Unknown Date (has links) (PDF)
University, Diss., 2004--Osnabrück.
10

Design, Fabrication, and Characterization of Monolithically Integrated Acoustic and Photonic Devices on Lithium Niobate Over Insulator (LNOI) Platform

Mahmoud, Mohamad 01 February 2018 (has links)
Integration of acoustics and photonics devices on the same chip will enable various applications including: building miniaturized sensors, on-chip filtering and optical signal processing, high speed modulation, as well as non-linear optical devices. As an example of the capabilities enabled by such integration, we target the development of a rotation sensor gyroscope based on the acousto-optic effect. The gyroscope components are integrated on a Lithium Niobate Over Insulator (LNOI) substrate because it is a unique platform that exhibits exceptional acoustic as well as photonic properties. However, acoustics and photonics have never been integrated on such substrate, which required the development of a new fabrication process and the design of novel components.. The main challenges we had to overcome and resulted in innovative demonstrations of fabrication processes and devices are:  Developing a robust fabrication process for etching lithium Niobate (LN) waveguides and integrating them with acoustic transducers: A robust fabrication process was developed on the LNOI platform, which can integrate patterning sub-micron features together with microscale ones on the same 3’’ substrate. Furthermore, the developed fabrication process enabled integrating metallic Al electrodes together with etched LN waveguides, which is required for building various components like electro-optic modulators and acousto-optic modulators.  Coupling light in and out of chip: Gratings couplers were designed for optimum coupling of the TE polarized light. The optimization was based on FDTD simulation on LUMERICAL. The grating couplers realization enabled estimation of the light coupling loss in and out of the chip. The measured coupling loss was about 9 dB per coupler in the best case which is much more than the estimated from simulation. That difference is attributed to the alignment accuracy of the photonic chip.  Integrating photonic waveguides/resonators and coupling light between them: LNOI waveguides and photonic resonators were designed and built. The photonic resonators enabled extraction of the losses of waveguides by monitoring the photonic resonator Quality factor, Q, or Finesse (F). Directional couplers (DCs) are commonly used as coupling elements to photonic resonators. However, etching narrow gaps in LN is a challenge that we avoided by using multi-mode interference (MMI) couplers, where butterfly MMI couplers were designed as coupling element to photonic racetrack (RT) resonators aiming for critical coupling condition. Additionally 3-dB MMI couplers were designed to be used as beam combiners in the Mach-Zehnder interferometer (MZI). The built RT resonators enabled extraction of the propagation losses in the etched LNOI photonic waveguides, which were found to be equal to2.5 dB/cm.  Building high efficiency electro-optic modulators (EOMs): The EOM is used in the AOG to compensate for temperature variations and other environmental variation affecting the rotation measurement. The EOM realization enabled extraction of the electro-optic (EO) coefficient for the LN thin film, which permits to evaluate the magnitude of the control voltages required to stabilize the system. EOMs of two different types were demonstrated, one is based on a photonic RT while the other is based on an Asymmetric MZI (AMZI). The RT EOM represents the first demonstration for such device with etched waveguides in Y cut LNOI platform. Modulation bandwidth of 4 GHz, wavelength tuning rate of 0.32 pm/V and an ER of more than 10 dB were experimentally measured for the RT EOM. For the AMZI, a half wave voltage length product of 16.8 Vcm was experimentally measured. Although, it is not the best we can get from this LNOI platform because of our wide waveguides, feeding that EO coefficient to the AOG system model ensures that the temperature variation from -54 oC to 25 oC can be compensated by applying a maximum voltage of 64.5 V.  Building efficient acousto-optic modulators (AOMs): The AOM enabled the extraction of the acousto-optic (AO) coefficient, which directly impacts the AOG scale factor (SF). Additionally, two different types of AOMs were demonstrated, one is based on an MZI embedded inside a SAW cavity while the other is based on a photonic RT whose coupling condition is under EO control. For the MZI AOM, the SAW resonator enhances the modulation efficiency due to the resonator Q such that the phase shift per square root of power extracted from the measurements is a factor of 3x higher than what previously reported on a GaAs platform, which makes it, to the author’s knowledge, effectively the highest AO modulation ever attained on chip. On the other hand, the EO tuned RT AOM showcases integration of various functionalities on same platform to build efficient AOM that can be operated at the desired wavelength. The EO tuning not only changes the operating optical wavelength but also ensures the critical coupling condition needed for efficient modulation. This design takes advantage of the unique AO and EO properties of LN, hence showcasing important building blocks for RF-photonic applications. By addressing all the previous challenges through the demonstration of high performance components, we were able to prototype the first acousto-optic gyroscope. That prototype represents the first demonstration of a novel rotation sensing technique, which combines the following advantages: (i) large mass (there is no suspended mass in the sensing mechanism and hence no limits on increasing the mass and no concerns about stiction issues during fabrication), and (ii) high shock resistance (since the sensing mechanism is strain based, the AOG has no moving parts that would not survive high G accelerations). The AOG SF is estimated comparing three photonic phase sensing techniques which are MZI, RT as well as RT coupled to MZI (MZI/RT). The phase sensitivity is estimated in terms of the cavity F for each technique. That theoretical analysis is verified by experimental measurement for the SF for both the MZI and the RT AOGs. The measured SF for the MZI is 48 nv/(o/sec) while it is about 9 nv/(o/sec) for the RT AOG. The SF is lower for the RT AOG because the Finesse (F~6) of the RT is not as high as expected. Nevertheless, these prototypes represent a proof of concept for our novel method for sensing rotation. Future work could prove that this AOG concept could be disruptive. Reducing the losses in the LNOI waveguide is a key challenge that can be overcome and has been already demonstrated by other groups showcasing 100x lower propagation loss. The estimated F from our model in that case would increase by approximately 50x, hence improving the gyroscope SF by the same factor. Further improvement of 100x is possible by increasing the SAW wavelength and Q. A separate challenge that needs to be addressed is the laser and photodetector integration on chip, which will reduce the coupling loss and the sensitivity to optical alignment.

Page generated in 0.0338 seconds