• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 783
  • 758
  • 61
  • 58
  • 24
  • 21
  • 21
  • 15
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • Tagged with
  • 2010
  • 2010
  • 679
  • 659
  • 312
  • 168
  • 136
  • 127
  • 123
  • 121
  • 118
  • 96
  • 96
  • 95
  • 95
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

A study on the potential effects of endogenous nitric oxide in the healing of acetic acid-induced gastric ulcer

Hui, Wun-chun. January 2001 (has links)
Thesis (M.Phil.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 113-129) Also available in print.
122

Effect of homocysteine on nitric oxide production in cardiomyocytes

Chan, Sai-yen, Victor. January 2001 (has links)
Thesis (M.Med.Sc.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 53-67). Also available in print.
123

Coping with stress anaerobic respiratory and oxidative stress tolerance mechanisms are critical for Neisseria gonorrhoeae biofilm formation /

Wood, Megan Lindsay Falsetta. Apicella, Michael A. January 2009 (has links)
Thesis supervisor: Michael A. Apicella. Includes bibliographic references (p. 175-192).
124

Role of transport dependent calcium signaling in nitric oxide production and endothelial shear stress responses /

Hong, Dihui. Barbee, Kenneth A. Jaron, Dov. January 2007 (has links)
Thesis (Ph. D.)--Drexel University, 2007. / Includes abstract and vita. Includes bibliographical references (leaves 118-126).
125

The catalytic mechanism of dimethylarginine dimethylaminohydrolase (DDAH) from pseudomonas aeruginosa

Stone, Everett Monroe, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
126

The role of the L-arginine/nitric oxide pathway in the arterial adaptation to simulated microgravity

Hutchings, Simon Roderick 11 1900 (has links)
Orthostatic intolerance following exposure to simulated or actual microgravity is observed following spaceflight and extended periods of bed rest, and is not always associated with simultaneous hypotension. Differential adaptation of cephalic and caudal arterial vasculatures (as a result of removal of the normal hydrostatic gradient) is proposed as a potential mechanism underlying this phenomenon. A potential role for changes to the L-arginine/nitric oxide pathway in such adaptations has been suggested, predominantly from previous in vitro studies; using an established model of simulated microgravity (head-down tilt; HDT). This thesis investigates whether findings in isolated vessels are reflected by in vivo measurements of cephalic and caudal vascular function. Using carotid or iliac artery flow normalized to mean arterial pressure as an index of cerebral or hind limb vascular conductance, autoregulatory cerebral vasodilatation in response to lower body negative pressure was found to be impaired following HDT. In addition, α¬1-adrenoceptor agonist-mediated vasoconstriction was decreased in the cerebral vasculature and increased in the peripheral and hind limb vasculature. Administration of acetylcholine or the non-selective nitric oxide synthase (NOS) inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) demonstrated a decreased contribution of NOS to cerebrovascular tone, but an increased contribution of NOS to peripheral vascular resistance and tone of the hind limb vasculature. Together with a lack of difference in the response to the selective inducible NOS (iNOS) inhibitor 1400W, these results suggest that differential adaptation of eNOS may account for the observed differences between control and HDT animals. Further investigation of the changes to the L-arginine/nitric oxide pathway suggest that these changes are not associated with changes in eNOS expression, but may be related to altered activity of eNOS. Furthermore, the bioavailability (as measured by pharmacokinetic half life) or the vascular effector mechanisms (as measured by the haemodynamic response to exogenously administered nitric oxide) responsible for the effects of nitric oxide were also shown to be unaffected by HDT. These findings suggest that differential adaptation of the L-arginine/nitric oxide pathway may contribute to the inability to raise total peripheral resistance and impaired cerebral autoregulation following HDT, thereby representing a mechanism of orthostatic intolerance following exposure to microgravity. / Medicine, Faculty of / Anesthesiology, Pharmacology and Therapeutics, Department of / Graduate
127

An Experimental and Theoretical Analysis of Nitric Oxide in the Microcirculation

Namin, Shabnam M 27 June 2012 (has links)
Nitric Oxide (NO) is produced in the vascular endothelium where it then diffuses to the adjacent smooth muscle cells (SMC) activating agents known to regulate vascular tone. The close proximity of the site of NO production to the red blood cells (RBC) and its known fast consumption by hemoglobin, suggests that the blood will scavenge most of the NO produced. Therefore, it is unclear how NO is able to play its role in accomplishing vasodilation. Investigation of NO production and consumption rates will allow insight into this paradox. DAF-FM is a sensitive NO fluorescence probe widely used for qualitative assessment of cellular NO production. With the aid of a mathematical model of NO/DAF-FM reaction kinetics, experimental studies were conducted to calibrate the fluorescence signal showing that the slope of fluorescent intensity is proportional to [NO]2 and exhibits a saturation dependence on [DAF-FM]. In addition, experimental data exhibited a Km dependence on [NO]. This finding was incorporated into the model elucidating NO2 as the possible activating agent of DAF-FM. A calibration procedure was formed and applied to agonist stimulated cells, providing an estimated NO release rate of 0.418 ± 0.18 pmol/cm2s. To assess NO consumption by RBCs, measurements of the rate of NO consumption in a gas stream flowing on top of an RBC solution of specified Hematocrit (Hct) was performed. The consumption rate constant (kbl)in porcine RBCs at 25oC and 45% Hct was estimated to be 3500 + 700 s-1. kbl is highly dependent on Hct and can reach up to 9900 + 4000 s-1 for 60% Hct. The nonlinear dependence of kbl on Hct suggests a predominant role for extracellular diffusion in limiting NO uptake. Further simulations showed a linear relationship between varying NO production rates and NO availability in the SMCs utilizing the estimated NO consumption rate. The corresponding SMC [NO] level for the average NO production rate estimated was approximately 15.1 nM. With the aid of experimental and theoretical methods we were able to examine the NO paradox and exhibit that endothelial derived NO is able to escape scavenging by RBCs to diffuse to the SMCs.
128

i-Nitrite Therapy for Treatment of Peripheral Arterial Disease

Maan, Neeti 27 August 2012 (has links)
No description available.
129

Measurement of carbon monoxide and nitric oxide infrared spectra employing a Michelson goniometer /

Chen, Da-Wun January 1975 (has links)
No description available.
130

Insights Into Nitric Oxide Reactivity With Iron-containing Enzymes

Martin, Christopher P. 01 January 2024 (has links) (PDF)
Nitric oxide (NO) is a small, gaseous molecule that is toxic to life at high doses but serves a crucial role in biological processes at lower concentrations, including: cell signaling, immune response, and more recently, as a synthon in the biosynthesis of natural products in bacteria. Metalloenzymes are incredibly versatile catalysts that enable chemistry that often, still has no comparable laboratory reaction. TxtE, a cytochrome P450 (CYP), utilizes NO as a co-substrate along with dioxygen (O2) to catalyze the regioselective nitration of L-tryptophan (Trp) to produce 4-NO2-Trp. Work in this dissertation established that the TxtE ferric-superoxo intermediate is resistant to reduction, which facilitates its reaction with diffusible NO en route to an , as yet,-uncharacterized nitrating species. Furthermore, it is shown that an outer-sphere protein residue influences the nitration chemistry of TxtE. A Thr250Ala mutant version of TxtE characterized and found to lack all nitration ability despite maintaining cofactor incorporation and retaining competence for formation of the ferric-superoxo intermediate. Separately, experiments performed with wild-type TxtE demonstrate that analogs of Trp affect the lifetime of the ferric-superoxo intermediate and enable substrate hydroxylation. Additionally, a non-heme, diiron enzyme from Mycobacterium kansasii (MkaHLP) was previously established to possess NO peroxidase activity. In this dissertation, a Tyr54Phe mutant form of MkaHLP was characterized and found to have greatly diminished NO peroxidase activity due to the removal of the characteristic tyrosine ligand to the diiron site. Implications of this change in activity are discussed in the relevant section.

Page generated in 0.042 seconds