• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Habitat, isolation, identification and nitrogen fixation of Rhizobiaceae associated with rangeland legumes from Wyoming, USA

Devkota, Dibya. January 2007 (has links)
Thesis (M.S.)--University of Wyoming, 2007. / Title from PDF title page (viewed on Oct. 23, 2008). Includes bibliographical references.
2

The nitrogen-fixing symbiosis between Rhizobium sp. sin-1 and Sesbania spp. /

Rana, Debashis, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves [140]-165). Also available on the Internet.
3

The nitrogen-fixing symbiosis between Rhizobium sp. sin-1 and Sesbania spp.

Rana, Debashis, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves [140]-165). Also available on the Internet.
4

Nitrogen exchange between plants through common mycorrhizal networks /

He, Xinhua. January 2002 (has links) (PDF)
Thesis (Ph.D.) - University of Queensland, 2004. / Includes bibliography.
5

Nitrogen isotope variation in the environment : implications for interpretation /

Tozer, Wade. January 2006 (has links)
Thesis (Ph.D. Biological Sciences)--University of Waikato, 2006. / Includes bibliographical references (leaves 181-196) Also available via the World Wide Web.
6

Genetic basis for the host-specific nitrogen fixation phenotype of Caucasian clover rhizobia

Miller, Simon Hugh, n/a January 2006 (has links)
Trifolium ambiguum (Caucasian clover) is being released in New Zealand for use in areas where growth of T. repens (white clover) is marginal. Although closely related to T. repens, T. ambiguum has unique and highly specific nodulation requirements and as rhizobial strains capable of effectively nodulating T. ambiguum are not naturally found in New Zealand soils, they must be introduced with the seed. Rhizobium leguminosarum bv. trifolii strains such as ICC105 form effective nodules on T. ambiguum but ineffective (Fix⁻) nodules on T. repens. The T. repens nodules nevertheless develop normally and contain bacteroids. R. l. bv. trifolii strains that are effective on T. repens such as NZP561, fail to nodulate T. ambiguum. As the host-specific nitrogen fixation defect of Caucasian clover rhizobia on T. repens has potentially adverse agronomic implications, the genetic basis for this Fix⁻ phenotype was investigated. Rhizobium leguminosarum bv. trifolii strain ICC105 was converted to Fix⁺ on T. repens by the introduction of an 18-kb fragment of DNA from a white clover rhizobial strain (NZP514) symbiotic plasmid. This fragment contained several nif and fix genes, including nifHDKEN, fixABCX, nifA, nifB, fdxN and fixU. Tn5 mutation of these white clover rhizobial genes demonstrated that most were required to impart the Fix⁺ phenotype on T. repens to ICC105, with the exception of nifA. Mutagenesis of the ICC105 nifA gene and subsequent complementation with various combinations of the white clover rhizobia nif/fix genes as well as transcriptional lacZ fusion studies of the ICC105 nifA and nifH genes demonstrated that ICC105 nifA is expressed and functional during the ineffective nodulation of T. repens and able to activate expression of nifHDKEN and fixABCX operons derived from white clover rhizobium but not from ICC105. Sequence analysis and comparison of the intergenic region between the divergently transcribed nif/fix operons revealed a conserved 111-bp region found between the nifH/fixA promoters of Caucasian clover rhizobia, but not in white clover rhizobia. Attempts to modify this region in ICC105 failed in creating a strain which was Fix⁺ on T. repens; however recombination of the nifHD/fixAB region from a white clover rhizobium into the ICC105 genome produced several strains with a �swapped� nitrogen fixation phenotype (i.e. Fix⁺ on T. repens and Fix⁻ on T. ambiguum). A hypothesis was therefore proposed by which differences in the nifH/fixA promoter regions of Caucasian clover rhizobia and white clover rhizobia modulate the expression of the upstream genes in response to the particular plant host they are nodulating. The incompatibility between the symbiotic plasmid of R. l. bv. trifolii ICC105 and the white clover rhizobium symbiotic plasmid cointegrate, pPN1, was also investigated and potential regions of each plasmid involved in this incompatibility were identified. The research presented in this thesis has contributed to the genetic knowledge of the nitrogen fixation genes, and regulation of these genes in R. l. bv. trifolii. It has also provided progress towards the goal of creating a suitable inoculant strain for T. ambiguum that is able to fix nitrogen in symbiosis with both T. repens and T. ambiguum.
7

Impact of a red clover winter cover crop on carbon and nitrogen mineralization by microorganisms in soil aggregates

Ndiaye, Aissatou 24 November 1998 (has links)
Although legumes have been widely studied for their nitrogen-fixing ability, it is uncertain to what extent legume cover crops achieve their nitrogen-fixing potential under the climatic conditions encountered in western Oregon. Furthermore, it is unknown what factors control the proportions of legume cover crop N that are either sequestered into soil organic matter, or that contribute to the N requirements of the following summer crop. Soil was sampled in mid-September 1997, after harvest of a summer broccoli crop, from plots located at the North Willamette Research and Extension Center, Aurora, Oregon. Soil was sampled from main plots that had been either winter cover cropped with red clover (LN��� and LN���) or fallowed during the winter period (FN��� and FN���), and specifically from sub-plots in which the following summer crop had received either zero (N���) or an intermediate (N���) rate of N fertilizer as urea. Levels of total organic carbon (TOC), total Kjeldahl nitrogen (TKN), and readily mineralizable C and N were measured in both whole soil samples and in different aggregate-size classes (<0.25, 0.25-0.5 0.5-1.0, 1.0-2.0, and 2-5mm) prepared by dry sieving the soil. Aggregate size-class distribution was not affected by the cover crop treatment. Although there was no significant effect of cover crop treatment on either TKN or TOC levels in whole soil samples, TOC levels were consistently higher in the small aggregate size-classes <1 mm of the fallow than the legume treatment. There was a significantly higher level of mineralizable C in the <0.25 mm size class of the legume than the fallow treatment. There was a trend for the level of mineralizable N to be greater in soil from the legume than the fallow treatment. However, N fertilizer had a significant positive effect on the level of readily mineralizable N in both fallow and legume cover-cropped treatments, it had a negative effect on TKN levels among all aggregate-size classes. There were differences in the levels of mineralizable N measured among the aggregate-size classes, and immobilization of N between 20 and 40 days of incubation also differed among the aggregate-size classes. / Graduation date: 1999
8

Role of bacterial NADP dependent isocitrate dehydrogenase in the Bradyrhizobium japonicum and soybean symbiosis /

Shah, Ritu. January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 222-247). Also available on the Internet.
9

Role of bacterial NADP dependent isocitrate dehydrogenase in the Bradyrhizobium japonicum and soybean symbiosis

Shah, Ritu. January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 222-247). Also available on the Internet.
10

Genetic basis for the host-specific nitrogen fixation phenotype of Caucasian clover rhizobia

Miller, Simon Hugh, n/a January 2006 (has links)
Trifolium ambiguum (Caucasian clover) is being released in New Zealand for use in areas where growth of T. repens (white clover) is marginal. Although closely related to T. repens, T. ambiguum has unique and highly specific nodulation requirements and as rhizobial strains capable of effectively nodulating T. ambiguum are not naturally found in New Zealand soils, they must be introduced with the seed. Rhizobium leguminosarum bv. trifolii strains such as ICC105 form effective nodules on T. ambiguum but ineffective (Fix⁻) nodules on T. repens. The T. repens nodules nevertheless develop normally and contain bacteroids. R. l. bv. trifolii strains that are effective on T. repens such as NZP561, fail to nodulate T. ambiguum. As the host-specific nitrogen fixation defect of Caucasian clover rhizobia on T. repens has potentially adverse agronomic implications, the genetic basis for this Fix⁻ phenotype was investigated. Rhizobium leguminosarum bv. trifolii strain ICC105 was converted to Fix⁺ on T. repens by the introduction of an 18-kb fragment of DNA from a white clover rhizobial strain (NZP514) symbiotic plasmid. This fragment contained several nif and fix genes, including nifHDKEN, fixABCX, nifA, nifB, fdxN and fixU. Tn5 mutation of these white clover rhizobial genes demonstrated that most were required to impart the Fix⁺ phenotype on T. repens to ICC105, with the exception of nifA. Mutagenesis of the ICC105 nifA gene and subsequent complementation with various combinations of the white clover rhizobia nif/fix genes as well as transcriptional lacZ fusion studies of the ICC105 nifA and nifH genes demonstrated that ICC105 nifA is expressed and functional during the ineffective nodulation of T. repens and able to activate expression of nifHDKEN and fixABCX operons derived from white clover rhizobium but not from ICC105. Sequence analysis and comparison of the intergenic region between the divergently transcribed nif/fix operons revealed a conserved 111-bp region found between the nifH/fixA promoters of Caucasian clover rhizobia, but not in white clover rhizobia. Attempts to modify this region in ICC105 failed in creating a strain which was Fix⁺ on T. repens; however recombination of the nifHD/fixAB region from a white clover rhizobium into the ICC105 genome produced several strains with a �swapped� nitrogen fixation phenotype (i.e. Fix⁺ on T. repens and Fix⁻ on T. ambiguum). A hypothesis was therefore proposed by which differences in the nifH/fixA promoter regions of Caucasian clover rhizobia and white clover rhizobia modulate the expression of the upstream genes in response to the particular plant host they are nodulating. The incompatibility between the symbiotic plasmid of R. l. bv. trifolii ICC105 and the white clover rhizobium symbiotic plasmid cointegrate, pPN1, was also investigated and potential regions of each plasmid involved in this incompatibility were identified. The research presented in this thesis has contributed to the genetic knowledge of the nitrogen fixation genes, and regulation of these genes in R. l. bv. trifolii. It has also provided progress towards the goal of creating a suitable inoculant strain for T. ambiguum that is able to fix nitrogen in symbiosis with both T. repens and T. ambiguum.

Page generated in 0.0908 seconds