• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TiCTak: Target-Specific Centrality Manipulation on Large Networks

January 2016 (has links)
abstract: Measuring node centrality is a critical common denominator behind many important graph mining tasks. While the existing literature offers a wealth of different node centrality measures, it remains a daunting task on how to intervene the node centrality in a desired way. In this thesis, we study the problem of minimizing the centrality of one or more target nodes by edge operation. The heart of the proposed method is an accurate and efficient algorithm to estimate the impact of edge deletion on the spectrum of the underlying network, based on the observation that the edge deletion is essentially a local, sparse perturbation to the original network. Extensive experiments are conducted on a diverse set of real networks to demonstrate the effectiveness, efficiency and scalability of our approach. In particular, it is average of 260.95%, in terms of minimizing eigen-centrality, better than the standard matrix-perturbation based algorithm, with lower time complexity. / Dissertation/Thesis / Masters Thesis Computer Science 2016
2

Modeling cross-border financial flows using a network theoretic approach

Sekgoka, Chaka Patrick 18 February 2021 (has links)
Criminal networks exploit vulnerabilities in the global financial system, using it as a conduit to launder criminal proceeds. Law enforcement agencies, financial institutions, and regulatory organizations often scrutinize voluminous financial records for suspicious activities and criminal conduct as part of anti-money laundering investigations. However, such studies are narrowly focused on incidents and triggered by tip-offs rather than data mining insights. This research models cross-border financial flows using a network theoretic approach and proposes a symmetric-key encryption algorithm to preserve information privacy in multi-dimensional data sets. The newly developed tools will enable regulatory organizations, financial institutions, and law enforcement agencies to identify suspicious activity and criminal conduct in cross-border financial transactions. Anti-money laundering, which comprises laws, regulations, and procedures to combat money laundering, requires financial institutions to verify and identify their customers in various circumstances and monitor suspicious activity transactions. Instituting anti-money laundering laws and regulations in a country carries the benefit of creating a data-rich environment, thereby facilitating non-classical analytical strategies and tools. Graph theory offers an elegant way of representing cross-border payments/receipts between resident and non-resident parties (nodes), with links representing the parties' transactions. The network representations provide potent data mining tools, facilitating a better understanding of transactional patterns that may constitute suspicious transactions and criminal conduct. Using network science to analyze large and complex data sets to detect anomalies in the data set is fast becoming more important and exciting than merely learning about its structure. This research leverages advanced technology to construct and visualize the cross-border financial flows' network structure, using a directed and dual-weighted bipartite graph. Furthermore, the develops a centrality measure for the proposed cross-border financial flows network using a method based on matrix multiplication to answer the question, "Which resident/non-resident nodes are the most important in the cross-border financial flows network?" The answer to this question provides data mining insights about the network structure. The proposed network structure, centrality measure, and characterization using degree distributions can enable financial institutions and regulatory organizations to identify dominant nodes in complex multi-dimensional data sets. Most importantly, the results showed that the research provides transaction monitoring capabilities that allow the setting of customer segmentation criteria, complementing the built-in transaction-specific triggers methods for detecting suspicious activity transactions. / Thesis (PhD)--University of Pretoria, 2021. / Banking Sector Education and Training Authority (BANKSETA) / UP Postgraduate Bursary / Industrial and Systems Engineering / PhD / Unrestricted
3

The Necessity and Challenges of Automatic Causal Map Processing: A Network Science Perspective

Freund, Alexander J. 28 April 2021 (has links)
No description available.

Page generated in 0.0976 seconds