1 |
Sparseness-constrained seismic deconvolution with curveletsHennenfent, Gilles, Herrmann, Felix J., Neelamani, Ramesh January 2005 (has links)
Continuity along reflectors in seismic images is used via Curvelet representation to stabilize the convolution operator inversion. The Curvelet transform is a new multiscale transform that provides sparse representations for images that comprise smooth objects separated by piece-wise smooth discontinuities (e.g. seismic images). Our iterative Curvelet-regularized deconvolution algorithm combines conjugate gradient-based inversion with noise regularization performed using non-linear Curvelet coefficient thresholding. The thresholding operation enhances the sparsity of Curvelet representations. We show on a synthetic example that our algorithm provides improved resolution and continuity along reflectors as well as reduced ringing effect compared to the iterative Wiener-based deconvolution approach.
|
Page generated in 0.0982 seconds