• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High performance latent dirichlet allocation for text mining

Liu, Zelong January 2013 (has links)
Latent Dirichlet Allocation (LDA), a total probability generative model, is a three-tier Bayesian model. LDA computes the latent topic structure of the data and obtains the significant information of documents. However, traditional LDA has several limitations in practical applications. LDA cannot be directly used in classification because it is a non-supervised learning model. It needs to be embedded into appropriate classification algorithms. LDA is a generative model as it normally generates the latent topics in the categories where the target documents do not belong to, producing the deviation in computation and reducing the classification accuracy. The number of topics in LDA influences the learning process of model parameters greatly. Noise samples in the training data also affect the final text classification result. And, the quality of LDA based classifiers depends on the quality of the training samples to a great extent. Although parallel LDA algorithms are proposed to deal with huge amounts of data, balancing computing loads in a computer cluster poses another challenge. This thesis presents a text classification method which combines the LDA model and Support Vector Machine (SVM) classification algorithm for an improved accuracy in classification when reducing the dimension of datasets. Based on Density-Based Spatial Clustering of Applications with Noise (DBSCAN), the algorithm automatically optimizes the number of topics to be selected which reduces the number of iterations in computation. Furthermore, this thesis presents a noise data reduction scheme to process noise data. When the noise ratio is large in the training data set, the noise reduction scheme can always produce a high level of accuracy in classification. Finally, the thesis parallelizes LDA using the MapReduce model which is the de facto computing standard in supporting data intensive applications. A genetic algorithm based load balancing algorithm is designed to balance the workloads among computers in a heterogeneous MapReduce cluster where the computers have a variety of computing resources in terms of CPU speed, memory space and hard disk space.
2

Operational Modal Parameter Estimation from Short Time-Data Series

Arora, Rahul 03 June 2014 (has links)
No description available.
3

LEARNING RATES WITH CONFIDENCE LIMITS FOR JET ENGINE MANUFACTURING PROCESSES AND PART FAMILIES FROM NOISY DATA

Young, William Albert, II January 2005 (has links)
No description available.
4

Approximation de fonctions et de données discrètes au sens de la norme L1 par splines polynomiales / Function and data approximation in L1 norm by polynomial splines

Gajny, Laurent 15 May 2015 (has links)
L'approximation de fonctions et de données discrètes est fondamentale dans des domaines tels que la planification de trajectoire ou le traitement du signal (données issues de capteurs). Dans ces domaines, il est important d'obtenir des courbes conservant la forme initiale des données. L'utilisation des splines L1 semble être une bonne solution au regard des résultats obtenus pour le problème d'interpolation de données discrètes par de telles splines. Ces splines permettent notamment de conserver les alignements dans les données et de ne pas introduire d'oscillations résiduelles comme c'est le cas pour les splines d'interpolation L2. Nous proposons dans cette thèse une étude du problème de meilleure approximation au sens de la norme L1. Cette étude comprend des développements théoriques sur la meilleure approximation L1 de fonctions présentant une discontinuité de type saut dans des espaces fonctionnels généraux appelés espace de Chebyshev et faiblement Chebyshev. Les splines polynomiales entrent dans ce cadre. Des algorithmes d'approximation de données discrètes au sens de la norme L1 par procédé de fenêtre glissante sont développés en se basant sur les travaux existants sur les splines de lissage et d'ajustement. Les méthodes présentées dans la littérature pour ces types de splines peuvent être relativement couteuse en temps de calcul. Les algorithmes par fenêtre glissante permettent d'obtenir une complexité linéaire en le nombre de données. De plus, une parallélisation est possible. Enfin, une approche originale d'approximation, appelée interpolation à delta près, est développée. Nous proposons un algorithme algébrique avec une complexité linéaire et qui peut être utilisé pour des applications temps réel. / Data and function approximation is fundamental in application domains like path planning or signal processing (sensor data). In such domains, it is important to obtain curves that preserve the shape of the data. Considering the results obtained for the problem of data interpolation, L1 splines appear to be a good solution. Contrary to classical L2 splines, these splines enable to preserve linearities in the data and to not introduce extraneous oscillations when applied on data sets with abrupt changes. We propose in this dissertation a study of the problem of best L1 approximation. This study includes developments on best L1 approximation of functions with a jump discontinuity in general spaces called Chebyshev and weak-Chebyshev spaces. Polynomial splines fit in this framework. Approximation algorithms by smoothing splines and spline fits based on a sliding window process are introduced. The methods previously proposed in the littérature can be relatively time consuming when applied on large datasets. Sliding window algorithm enables to obtain algorithms with linear complexity. Moreover, these algorithms can be parallelized. Finally, a new approximation approach with prescribed error is introduced. A pure algebraic algorithm with linear complexity is introduced. This algorithm is then applicable to real-time application.
5

A scalable evolutionary learning classifier system for knowledge discovery in stream data mining

Dam, Hai Huong, Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2008 (has links)
Data mining (DM) is the process of finding patterns and relationships in databases. The breakthrough in computer technologies triggered a massive growth in data collected and maintained by organisations. In many applications, these data arrive continuously in large volumes as a sequence of instances known as a data stream. Mining these data is known as stream data mining. Due to the large amount of data arriving in a data stream, each record is normally expected to be processed only once. Moreover, this process can be carried out on different sites in the organisation simultaneously making the problem distributed in nature. Distributed stream data mining poses many challenges to the data mining community including scalability and coping with changes in the underlying concept over time. In this thesis, the author hypothesizes that learning classifier systems (LCSs) - a class of classification algorithms - have the potential to work efficiently in distributed stream data mining. LCSs are an incremental learner, and being evolutionary based they are inherently adaptive. However, they suffer from two main drawbacks that hinder their use as fast data mining algorithms. First, they require a large population size, which slows down the processing of arriving instances. Second, they require a large number of parameter settings, some of them are very sensitive to the nature of the learning problem. As a result, it becomes difficult to choose a right setup for totally unknown problems. The aim of this thesis is to attack these two problems in LCS, with a specific focus on UCS - a supervised evolutionary learning classifier system. UCS is chosen as it has been tested extensively on classification tasks and it is the supervised version of XCS, a state of the art LCS. In this thesis, the architectural design for a distributed stream data mining system will be first introduced. The problems that UCS should face in a distributed data stream task are confirmed through a large number of experiments with UCS and the proposed architectural design. To overcome the problem of large population sizes, the idea of using a Neural Network to represent the action in UCS is proposed. This new system - called NLCS { was validated experimentally using a small fixed population size and has shown a large reduction in the population size needed to learn the underlying concept in the data. An adaptive version of NLCS called ANCS is then introduced. The adaptive version dynamically controls the population size of NLCS. A comprehensive analysis of the behaviour of ANCS revealed interesting patterns in the behaviour of the parameters, which motivated an ensemble version of the algorithm with 9 nodes, each using a different parameter setting. In total they cover all patterns of behaviour noticed in the system. A voting gate is used for the ensemble. The resultant ensemble does not require any parameter setting, and showed better performance on all datasets tested. The thesis concludes with testing the ANCS system in the architectural design for distributed environments proposed earlier. The contributions of the thesis are: (1) reducing the UCS population size by an order of magnitude using a neural representation; (2) introducing a mechanism for adapting the population size; (3) proposing an ensemble method that does not require parameter setting; and primarily (4) showing that the proposed LCS can work efficiently for distributed stream data mining tasks.
6

A scalable evolutionary learning classifier system for knowledge discovery in stream data mining

Dam, Hai Huong, Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2008 (has links)
Data mining (DM) is the process of finding patterns and relationships in databases. The breakthrough in computer technologies triggered a massive growth in data collected and maintained by organisations. In many applications, these data arrive continuously in large volumes as a sequence of instances known as a data stream. Mining these data is known as stream data mining. Due to the large amount of data arriving in a data stream, each record is normally expected to be processed only once. Moreover, this process can be carried out on different sites in the organisation simultaneously making the problem distributed in nature. Distributed stream data mining poses many challenges to the data mining community including scalability and coping with changes in the underlying concept over time. In this thesis, the author hypothesizes that learning classifier systems (LCSs) - a class of classification algorithms - have the potential to work efficiently in distributed stream data mining. LCSs are an incremental learner, and being evolutionary based they are inherently adaptive. However, they suffer from two main drawbacks that hinder their use as fast data mining algorithms. First, they require a large population size, which slows down the processing of arriving instances. Second, they require a large number of parameter settings, some of them are very sensitive to the nature of the learning problem. As a result, it becomes difficult to choose a right setup for totally unknown problems. The aim of this thesis is to attack these two problems in LCS, with a specific focus on UCS - a supervised evolutionary learning classifier system. UCS is chosen as it has been tested extensively on classification tasks and it is the supervised version of XCS, a state of the art LCS. In this thesis, the architectural design for a distributed stream data mining system will be first introduced. The problems that UCS should face in a distributed data stream task are confirmed through a large number of experiments with UCS and the proposed architectural design. To overcome the problem of large population sizes, the idea of using a Neural Network to represent the action in UCS is proposed. This new system - called NLCS { was validated experimentally using a small fixed population size and has shown a large reduction in the population size needed to learn the underlying concept in the data. An adaptive version of NLCS called ANCS is then introduced. The adaptive version dynamically controls the population size of NLCS. A comprehensive analysis of the behaviour of ANCS revealed interesting patterns in the behaviour of the parameters, which motivated an ensemble version of the algorithm with 9 nodes, each using a different parameter setting. In total they cover all patterns of behaviour noticed in the system. A voting gate is used for the ensemble. The resultant ensemble does not require any parameter setting, and showed better performance on all datasets tested. The thesis concludes with testing the ANCS system in the architectural design for distributed environments proposed earlier. The contributions of the thesis are: (1) reducing the UCS population size by an order of magnitude using a neural representation; (2) introducing a mechanism for adapting the population size; (3) proposing an ensemble method that does not require parameter setting; and primarily (4) showing that the proposed LCS can work efficiently for distributed stream data mining tasks.
7

A scalable evolutionary learning classifier system for knowledge discovery in stream data mining

Dam, Hai Huong, Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2008 (has links)
Data mining (DM) is the process of finding patterns and relationships in databases. The breakthrough in computer technologies triggered a massive growth in data collected and maintained by organisations. In many applications, these data arrive continuously in large volumes as a sequence of instances known as a data stream. Mining these data is known as stream data mining. Due to the large amount of data arriving in a data stream, each record is normally expected to be processed only once. Moreover, this process can be carried out on different sites in the organisation simultaneously making the problem distributed in nature. Distributed stream data mining poses many challenges to the data mining community including scalability and coping with changes in the underlying concept over time. In this thesis, the author hypothesizes that learning classifier systems (LCSs) - a class of classification algorithms - have the potential to work efficiently in distributed stream data mining. LCSs are an incremental learner, and being evolutionary based they are inherently adaptive. However, they suffer from two main drawbacks that hinder their use as fast data mining algorithms. First, they require a large population size, which slows down the processing of arriving instances. Second, they require a large number of parameter settings, some of them are very sensitive to the nature of the learning problem. As a result, it becomes difficult to choose a right setup for totally unknown problems. The aim of this thesis is to attack these two problems in LCS, with a specific focus on UCS - a supervised evolutionary learning classifier system. UCS is chosen as it has been tested extensively on classification tasks and it is the supervised version of XCS, a state of the art LCS. In this thesis, the architectural design for a distributed stream data mining system will be first introduced. The problems that UCS should face in a distributed data stream task are confirmed through a large number of experiments with UCS and the proposed architectural design. To overcome the problem of large population sizes, the idea of using a Neural Network to represent the action in UCS is proposed. This new system - called NLCS { was validated experimentally using a small fixed population size and has shown a large reduction in the population size needed to learn the underlying concept in the data. An adaptive version of NLCS called ANCS is then introduced. The adaptive version dynamically controls the population size of NLCS. A comprehensive analysis of the behaviour of ANCS revealed interesting patterns in the behaviour of the parameters, which motivated an ensemble version of the algorithm with 9 nodes, each using a different parameter setting. In total they cover all patterns of behaviour noticed in the system. A voting gate is used for the ensemble. The resultant ensemble does not require any parameter setting, and showed better performance on all datasets tested. The thesis concludes with testing the ANCS system in the architectural design for distributed environments proposed earlier. The contributions of the thesis are: (1) reducing the UCS population size by an order of magnitude using a neural representation; (2) introducing a mechanism for adapting the population size; (3) proposing an ensemble method that does not require parameter setting; and primarily (4) showing that the proposed LCS can work efficiently for distributed stream data mining tasks.

Page generated in 0.057 seconds