• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximation de fonctions et de données discrètes au sens de la norme L1 par splines polynomiales / Function and data approximation in L1 norm by polynomial splines

Gajny, Laurent 15 May 2015 (has links)
L'approximation de fonctions et de données discrètes est fondamentale dans des domaines tels que la planification de trajectoire ou le traitement du signal (données issues de capteurs). Dans ces domaines, il est important d'obtenir des courbes conservant la forme initiale des données. L'utilisation des splines L1 semble être une bonne solution au regard des résultats obtenus pour le problème d'interpolation de données discrètes par de telles splines. Ces splines permettent notamment de conserver les alignements dans les données et de ne pas introduire d'oscillations résiduelles comme c'est le cas pour les splines d'interpolation L2. Nous proposons dans cette thèse une étude du problème de meilleure approximation au sens de la norme L1. Cette étude comprend des développements théoriques sur la meilleure approximation L1 de fonctions présentant une discontinuité de type saut dans des espaces fonctionnels généraux appelés espace de Chebyshev et faiblement Chebyshev. Les splines polynomiales entrent dans ce cadre. Des algorithmes d'approximation de données discrètes au sens de la norme L1 par procédé de fenêtre glissante sont développés en se basant sur les travaux existants sur les splines de lissage et d'ajustement. Les méthodes présentées dans la littérature pour ces types de splines peuvent être relativement couteuse en temps de calcul. Les algorithmes par fenêtre glissante permettent d'obtenir une complexité linéaire en le nombre de données. De plus, une parallélisation est possible. Enfin, une approche originale d'approximation, appelée interpolation à delta près, est développée. Nous proposons un algorithme algébrique avec une complexité linéaire et qui peut être utilisé pour des applications temps réel. / Data and function approximation is fundamental in application domains like path planning or signal processing (sensor data). In such domains, it is important to obtain curves that preserve the shape of the data. Considering the results obtained for the problem of data interpolation, L1 splines appear to be a good solution. Contrary to classical L2 splines, these splines enable to preserve linearities in the data and to not introduce extraneous oscillations when applied on data sets with abrupt changes. We propose in this dissertation a study of the problem of best L1 approximation. This study includes developments on best L1 approximation of functions with a jump discontinuity in general spaces called Chebyshev and weak-Chebyshev spaces. Polynomial splines fit in this framework. Approximation algorithms by smoothing splines and spline fits based on a sliding window process are introduced. The methods previously proposed in the littérature can be relatively time consuming when applied on large datasets. Sliding window algorithm enables to obtain algorithms with linear complexity. Moreover, these algorithms can be parallelized. Finally, a new approximation approach with prescribed error is introduced. A pure algebraic algorithm with linear complexity is introduced. This algorithm is then applicable to real-time application.
2

Further development and optimisation of the CNN-classicification algorithm of Alfrödull for more accurate aerial image detection of decentralised solar energy systems : A study on how the performance of neural networks can beimproved through additional training data, image preprocessing, class balancing and sliding windowclassification

Lindvall, Erik January 2024 (has links)
The global use of solar power is growing at an unprecedented rate, making the need toaccurately track the energy generation of decentralised solar energy systems (SES) more andmore relevant. The purpose of this thesis is to further develop a binary image classifier for thesimulation system framework known as Alfrödull, which will be used to detect and segment SESfrom aerial images to simulate the energy generation within a given Swedish municipality on anhourly basis. This project focuses on improving the Alfrödull classifier through four differentanalyses. the first focusing on examining how additional training data from publicly availabledatasets affects the model performance. The second on how the model can be improvedthrough the use of various image pre-processing techniques. The third on how the model canbe improved through balancing the training datasets to make up for the low amount of positiveimages as well as utilising model ensembles for joint classification. Finally, the fourth analysisemploys a sliding window approach to classify overlapping image tiles. The results show thathaving training data that is a good representation of the environment the model will be used in iscrucial, that the use of image augmentation policies can significantly improve modelperformance, that compensating for class imbalance as well as utilising ensemble methodspositively impacts model performance and that a sliding window approach to classifyingoverlapping images significantly decreases the amount of missed SES at the cost of clusters offalsely classified negative images (false positives). In conclusion, this thesis serves as animportant stepping stone in the practical implementation of the Alfrödull framework, showcasingthe key aspects in making a well performing binary image classifier of SES in Sweden.

Page generated in 0.0994 seconds