• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Voies de signalisation non-canoniques du récepteur V2 de la vasopressine

Zhou, Joris 08 1900 (has links)
Le récepteur V2 (V2R) de la vasopressine est un récepteur couplé aux protéines G (RCPG), jouant un rôle fondamental dans le maintien de l’homéostasie hydrosodique. À l’instar de nombreux RCPGs, il est capable d’interagir avec plusieurs types de protéines G hétérotrimériques et possède des voies de signalisation peu explorées aux mécanismes mal compris. Ces voies non canoniques font l’objet des travaux exposés dans ce mémoire. Il s’agit d’explorer les caractéristiques et mécanismes de la signalisation de V2R via G12, et de la voie d’activation d’ERK 1/2 par transactivation du récepteur de l’insulin-like growth factor 1, IGF1R. Par des études de transfert d’énergie de résonance de bioluminescence (BRET), nous exposons la capacité de V2R à interagir avec la sous-unité Gα12 ainsi que la modulation de la conformation de l’hétérotrimère G12 par l’agoniste de V2R, l’arginine-vasopressine. Ces travaux dévoilent également la modulation de l’interaction entre Gα12 et son effecteur classique RhoA, suggérant un engagement de RhoA, ainsi que la potentialisation via Gα12 de la production d’AMP cyclique. À l’aide de diverses méthodes d’inhibition sélective, nos résultats précisent les mécanismes de la transactivation. Ils supportent notamment le rôle initiateur de l’activation de Src par V2R et l’absence d’implication des ligands connus d’IGF1R dans la transactivation. La métalloprotéase MMP 3 apparaît par ailleurs comme un bon candidat pour réguler la transactivation. Ce projet met en lumière des modes de signalisation peu explorés de V2R, dont l’implication physiologique et physiopathologique pourrait s’avérer significative, au-delà d’un apport fondamental dans la compréhension de la signalisation des RCPGs. / Vasopressin V2 receptor is a G protein coupled receptor (GPCR) responsible for the homeostatic regulation of water and sodium recapture from the urine to the bloodstream. Akin to numerous GPCRs, this receptor can interact with more than one heterotrimeric G protein subtype, and is still associated with some poorly explored signaling pathways with indefinite mechanisms. These non-canonical pathways are the focus of this project. This work aims at unveiling the characteristics and mechanisms underlying G12 mediated signaling by V2R and ERK 1/2 activation through the transactivation of the tyrosine kinase Insulin-like growth factor 1 receptor (IGF1R). Using bioluminescence resonance energy transfer (BRET) experiments, we reveal V2R’s ability to interact with the Gα12 subunit, as well as the modulation of G12 heterotrimer’s conformation in response to V2R agonist arginine vasopressin (AVP). AVP-induced modulation of Gα12’s interaction with its classical effector RhoA upon stimulation with AVP suggests the engagement of RhoA, and our data also reveals that Gα12 potentiates AVP-induced cAMP production. Using diverse selective inhibition strategies, our results further define the mechanism of transactivation. Our data support a starter position of AVP-induced Src activation and discard IGF1R known agonists as the potential autocrine/paracrine factor responsible for IGF1R activation. Furthermore, our results suggest that the metalloproteinase MMP 3 is a good candidate for IGF1R transactivation. This project sheds light on lesser known signaling pathways involving V2R, which could reveal important on a physiological and pathophysiological scale, besides bringing a better understanding of the principles of GPCR signaling.

Page generated in 0.1103 seconds