• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on Zebrafish Thrombocyte Function

Pulipakkam Radhakrishnan, Uvaraj 05 1900 (has links)
Thrombocytes are important players in hemostasis. There is still much to be explored regarding the molecular basis of the thrombocyte function. In our previous microarray analysis data, we found IFT122 (an intraflagellar transport protein known to be involved in cilia formation) transcripts in zebrafish thrombocytes. Given recent discoveries of non-ciliary roles for IFTs, we examined the possibility that IFT122 affects thrombocyte function. We studied the role of IFT122 in thrombocyte function. We also found that IFT122 plays a central role in thrombocyte activation initiated by the agonists ADP, collagen, PAR-1 peptide and epinephrine. Although the receptors for ADP, PAR-1 peptide and epinephrine are present in the zebrafish genome, the collagen receptor GPVI was missing. In this study, we identified G6fL as a collagen receptor in zebrafish thrombocytes. Furthermore, IFT knockdown results in reduction in Wnt signaling. The Wnt signaling has been shown to be involved in megakaryocyte proliferation and proplatelets production. Therefore, defects in IFT could lead to thrombocytopenia. Splenectomy is performed in humans to treat such conditions. Therefore, in this study we developed a survival surgery protocol for splenectomy. We have shown that number of thrombocytes and their microparticles increase following splenectomy in zebrafish. Thus overall the studies on thrombocyte function in zebrafish could enhance fundamental knowledge on hemostasis and may provide future target candidates for therapies.

Page generated in 0.0814 seconds