• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Direct measurement of the 114Cd(��, ��)115Cd cross section in the 1 eV to 300 keV energy range

Assumin-Gyimah, Kofi Tutu Addo 08 August 2023 (has links) (PDF)
The large thermal cross section of cadmium makes it ideal for many practical applications where screening of thermal neutrons is desired. For example, in non-destructive assay techniques, or for astrophysical studies of the s-process. All such applications require precise knowledge of the neutron-capture cross section on cadmium. Although there are some data on neutron-capture cross sections particularly at thermal energies and at energies relevant for astrophysics, there is very little data at most other energies. Further, the evaluated cross sections from the ENDF and JENDL databases disagree at high energies. Therefore, there is a critical need for precise knowledge of the 114Cd(��, ��)115Cd cross section over a large range of incident neutron energies. We performed a direct measurement of the neutron-capture cross section at the Los Alamos Neutron Science Center (LANSCE) using the Detector for Advanced Neutron Capture Experiments (DANCE). A highly enriched (∼$99%), 100 mg pressed metallic pellet sample of 114Cd was used to perform the neutron-capture measurements in the range of ���� = 1 eV to 300 keV using the white neutron source available at LANSCE. Additional neutron capture data were also taken on highly enriched samples of 112Cd and 113Cd to enable careful background subtraction of even the small contaminants found in the 114Cd sample. We used a large energy sum windows around the Q-value to circumvent any complication that may arise from populating the 180 keV isomeric (T1/2 = 44.56d) state in 115Cd.

Page generated in 0.072 seconds