Spelling suggestions: "subject:"nonergodic"" "subject:"nonperiodic""
41 |
Various Limiting Criteria for Multidimensional Diffusion ProcessesWasielak, Aramian January 2009 (has links)
In this dissertation we consider several limiting criteria forn-dimensional diffusion processes defined as solutions of stochasticdifferential equations. Our main interest is in criteria for polynomialand exponential rates of convergence to the steady state distributionin the total variation norm. Resulting criteria should place assumptionsonly on the coefficients of the elliptic differentialoperator governing the diffusion.Coupling of Harris chains is one of the main methods employed in thisdissertation.
|
42 |
Groups of measurable and measure preserving transformationsEigen, Stanley J. January 1982 (has links)
In chapters I and II, we show that the group G of invertible, non-singular transformations of a Lebesgue space is perfect, simple, and has no outer automorphisms. Some related results are obtained for the subgroup of measure preserving transformations and for the full group of an ergodic transformation. Further results are given with the underlying Lebesgue space replaced by a homogeneous measure algebra. It is also shown, in chapter III, that ergodic transformations are algebraically distinguishable from non-ergodics. Chapter IV introduces the notion of a fibered ergodic transformation. A fibered analogue of Dye's theorem is proved. In chapter V the family of transformations satisfying Dye's theorem for two fixed ergodics is shown to be dense in the coarse topology. Finally, in chapter VI, the concept of a triangle set in the unit square is introduced. Using this notion, a sufficiency condition for the ergodicity of T x S is obtained.
|
43 |
First passage percolation, a Berry-Esseen theorem for U-statistics, and optimal stopping.Wierman, John Charles, January 1976 (has links)
Thesis (Ph. D.)--University of Washington. / Bibliography: l. 99-100.
|
44 |
On the arithmetic structure of lattice actions on compact manifolds /Fisher, David. January 1999 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Mathematics, June 1999. / Includes bibliographical references. Also available on the Internet.
|
45 |
Ueber Ketohalogenverbindungen des Phenols und der KresoleJilke, Theodor, January 1903 (has links)
Inaug. Diss.--Marburg.
|
46 |
A Hilbert space approach to multiple recurrence in ergodic theoryBeyers, Frederik J. C. January 2004 (has links)
Thesis (M.Sc.)(Mathematics)--University of Pretoria, 2004. / Title from opening screen (viewed March 27, 2006). Includes summary. Includes bibliographical references.
|
47 |
Some results on recurrence and entropyPavlov, Ronald Lee. January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 162-164).
|
48 |
Ergodic type theorems in operator AlgebrasSchwartz, Larisa 30 November 2006 (has links)
No abstract / Mathematical Sciences / (D. Phil. (Mathematics))
|
49 |
Sarnak’s Conjecture about Möbius Function Randomness in Deterministic Dynamical SystemsWabnitz, Paul 21 November 2017 (has links)
Die vorliegende Arbeit befasst sich mit einer Vermutung von Sarnak aus dem Jahre 2010 über die Orthogonalität von durch deterministische dynamische Systeme induzierte Folgen zur Möbiusschen μ-Funktion. Ihre Hauptresultate sind zum einen der Ergodensatz mit Möbiusgewichten, welcher eine maßtheoretische (schwächere) Version von Sarnaks Vermutung darstellt, und zum anderen die bereits gesicherte Gültigkeit der genannten Vermutung in Spezialfällen, wobei hier exemplarisch unter anderem der Thue–Morse Shift und Schiefprodukterweiterungen von rationalen Rotationen auf dem Kreis gewählt worden sind. Zum Zwecke der Motivation zeigen wir, dass eine gewisse Wachstumsabschätzung für die Mertensfunktion äquivalent ist zum Primzahlsatz und skizzieren ein Resultat, welches die Äquivalenz einer weiteren solchen Abschätzung zur Riemannschen Vermutung liefert, um auf diese Weise die Bedeutung der Möbiusfunktion für die Zahlentheorie herauszustellen. Da sie für das Verständnis von Sarnaks Vermutung unerlässlich ist, geben wir eine Einführung in die Theorie der Entropie dynamischer Systeme auf Grundlage der Definitionen von Adler–Konheim–McAndrew, Bowen–Dinaburg und Kolmogorov–Sinai. Ferner berechnen wir die topologische Entropie des Thue–Morse Shifts und von Schiefprodukterweiterungen von Rotatione auf dem Kreis. Wir studieren die ergodische Zerlegung T-invarianter Maße auf kompakten metrischen Räumen mit stetiger Transformation T, welche wir für den Beweis des Ergodensatzes mit Möbiusgewichten benötigen. Sodann beweisen wir den genannten gewichteten Ergodensatz. Wir geben eine hinreichende Bedingung an für das Erfülltsein von Sarnaks Vermutung in einem gegebenen dynamischen System, welche im anschließenden Kapitel Anwendung findet.
So wird nachgewiesen, dass Sarnaks Vermutung im Falle des Thue–Morse Shifts
und von Schiefprodukterweiterungen von rationalen Rotationen auf dem Kreis erfüllt
ist. Abschließend wird gezeigt, dass Sarnaks Vermutung sich als Konsequenz
aus einer Vermutung von Chowla ergibt. / The thesis in hand deals with a conjecture of Sarnak from 2010 about the orthogonality of sequences induced by deterministic dynamical systems to the Möbius μ-function. Its main results are the ergodic theorem with Möbius weights, which is a measure theoretic (weaker) version of Sarnak’s conjecture, and the already assured validity of Sarnak’s conjecture in special cases, where we have exemplarily chosen the Thue–Morse shift and skew product extensions of rational rotations on the significance of the Möbius function for number theory. Since it is essential for the understanding of Sarnak’s conjecture we give an introduction to the theory of entropy of dynamical systems based on the definitions of Adler–Konheim–McAndrew, Bowen–Dinaburg and Kolmogorov–Sinai. Furthermore, we calculate the topological entropy of the Thue–Morse shift and of skew product extensions of rotations on the circle. We study the ergodic decomposition for T-invariant measures on compact metric spaces with continuous transformations T, which we will need for the proof of the ergodic theorem with Möbius weights. Thereafter, we prove the namely weighted ergodic theorem. We give a sufficient condition for Sarnak’s conjecture to hold for a given dynamical system, which we make use of in the following chapter. Thereupon, it is varified that Sarnak’s conjecture holds for the Thue–Morse shift and for skew product extensions of rational rotations on the circle. Lastly, it is shown that Sarnak’s conjecture from one of Chowla.
|
50 |
Equidistribution of expanding measures with local maximal dimension and Diophantine ApproximationShi, Ronggang 14 July 2009 (has links)
No description available.
|
Page generated in 0.0249 seconds