• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ανάπτυξη και χαρακτηρισμός καινοτόμων καταλυτών για την αντίδραση μετατόπισης του CO με ατμό σε χαμηλές θερμοκρασίες και κινητική μελέτη

Παναγιωτοπούλου, Παρασκευή 14 February 2008 (has links)
Στη παρούσα εργασία μελετάται η ανάπτυξη και ο χαρακτηρισμός καινοτόμων υποστηριγμένων καταλυτών ευγενών μετάλλων για την αντίδραση μετατόπισης του CO με ατμό (Water Gas Shift, WGS) σε χαμηλές θερμοκρασίες καθώς και η κινητική της εν λόγω αντίδρασης. Εξετάστηκε η επίδραση των φυσικοχημικών και μορφολογικών χαρακτηριστικών της διεσπαρμένης μεταλλικής φάσης (Pt, Pd, Ru, Rh) και του φορέα (οξείδια μετάλλων) καθώς και της χρήσης προωθητών (αλκάλια, αλκαλικές γαίες) στην καταλυτική ενεργότητα. Μεγαλύτερη δραστικότητα παρατηρήθηκε για καταλύτες Pt υποστηριγμένους σε αναγώγιμα οξείδια, κυρίως TiO2 και CeO2. Η φαινόμενη ενέργεια ενεργοποίησης της αντίδρασης, Ea, είναι ανεξάρτητη από τη φύση του μετάλλου, όταν τα ευγενή μέταλλα διασπείρονται στους φορείς TiO2 και CeO2. Αντιθέτως για τους καταλύτες Μ/Al2O3, η φαινόμενη ενέργεια ενεργοποίησης της αντίδρασης, Ea, εξαρτάται από τη φύση του μετάλλου, υποδεικνύοντας ότι η αντίδραση WGS, σε καταλύτες ευγενών μετάλλων υποστηριγμένων σε μη αναγώγιμους φορείς, ακολουθεί διαφορετικό μηχανισμό. Για καταλύτες Pt/TiO2, Ru/TiO2, Pt/CeO2 και Pt/Al2O3 η μετατροπή του CO αυξάνεται με αύξηση της περιεκτικότητας του καταλύτη σε μέταλλο. Ωστόσο ο εγγενής ρυθμός της αντίδρασης ανά επιφανειακό άτομο μετάλλου και η φαινόμενη ενέργεια ενεργοποίησης της αντίδρασης, Ea, δεν εξαρτώνται από τη φόρτιση (0-5 wt.%) και το μέγεθος των κρυσταλλιτών (1.3-16nm) του μετάλλου. Η επίδραση των μορφολογικών χαρακτηριστικών του φορέα στην καταλυτική ενεργότητα μελετήθηκε σε καταλύτες Pt/TiO2, και Pt/CeO2. Για τους καταλύτες Pt/TiO2 βρέθηκε ότι η μετατροπή του CO σε χαμηλές θερμοκρασίες βελτιώνεται σημαντικά όταν ο Pt διασπείρεται σε φορείς με μικρότερο μέγεθος κρυσταλλιτών. Η συχνότητα αναστροφής (TOF) του CO αυξάνεται κατά δύο τάξεις μεγέθους καθώς μειώνεται το μέγεθος των κρυσταλλιτών του TiO2 από 35 σε 16 nm, με παράλληλη μείωση της ενέργειας ενεργοποίησης από 16.9 έως 11.9 kcal/mol. Βρέθηκε, με χρήση τεχνικών θερμοπρογραμματιζόμενης αναγωγής (TPR) και φασματοσκοπίας Raman και FTIR, ότι η παρατηρούμενη αύξηση της ενεργότητας καταλυτών Pt/TiO2 οφείλεται σε αύξηση της αναγωγιμότητας του φορέα TiO2, η οποία αυξάνεται με μείωση του μεγέθους των κρυσταλλιτών του. Τα αποτελέσματα παρέχουν σημαντικές ενδείξεις για τη συμμετοχή του φορέα στο μηχανισμό της αντίδρασης WGS είτε άμεσα, μέσω του οξειδοαναγωγικού (redox) μηχανισμού, είτε έμμεσα, μέσω του συνδυαστικού (associative) μηχανισμού. Και στις δύο περιπτώσεις, φαίνεται ότι η παρουσία μερικώς ανηγμένων σωματιδίων TiO2 στην περιοχή κοντά στο διεσπαρμένο Pt, είναι απαραίτητη για την παραγωγή ενεργών κέντρων στη διεπιφάνεια μετάλλου/φορέα. Σε αντίθεση με τους καταλύτες Pt/TiO2, για τους καταλύτες Pt/CeO2 βρέθηκε ότι τόσο η συχνότητα αναστροφής του CO όσο και η ενέργεια ενεργοποίησης της αντίδρασης δεν εξαρτώνται σημαντικά από τα μορφολογικά χαρακτηριστικά του φορέα, τουλάχιστον υπό τις παρούσες πειραματικές συνθήκες. Η ενίσχυση του φορέα με κατάλληλη ποσότητα αλκαλίων (Na, K, Li, Cs) οδηγεί σε σημαντική αύξηση της ενεργότητας των καταλυτών Pt/TiO2. Βρέθηκε ότι σε όλες τις περιπτώσεις, η συχνότητα αναστροφής του CO περνάει από μέγιστο σε καταλύτες με περιεκτικότητα Pt:Αλκάλιο=1:1. Βέλτιστη συμπεριφορά παρουσίασε ο φορέας ενισχυμένος με Na, για τον οποίο παρατηρήθηκε ότι ο εγγενής ρυθμός της αντίδρασης ανά επιφανειακό άτομο Pt τριπλασιάζεται καθώς αυξάνεται η περιεκτικότητα σε Na από 0 σε 0.06 wt.%. Η προσθήκη αλκαλικών γαιών (CaO, SrO, BaO, MgO) στο φορέα οδηγεί σε σημαντική βελτίωση της καταλυτικής ενεργότητας των καταλυτών Pt/TiO2. Βέλτιστη συμπεριφορά παρουσιάζουν οι καταλύτες ενισχυμένοι με CaO και SrO σε περιεκτικότητα 2 wt.%, οι οποίοι έχουν υποστεί θερμική κατεργασία στους 600OC. Αύξηση της περιεκτικότητας CaO από 0 σε 4 wt.% έχει σαν αποτέλεσμα ο εγγενής ρυθμός της αντίδρασης να περνάει από μέγιστο, για το δείγμα με 2 wt.% CaO, του οποίου η συχνότητα αναστροφής του CO είναι ~2.5 φορές μεγαλύτερη συγκριτικά με το μη ενισχυμένο δείγμα. Τα αποτελέσματα των πειραμάτων Η2-TPD έδειξαν ότι, για καταλύτες ενισχυμένους με Na, Cs, CaO, WO3, καθώς και για καταλύτες M/TiO2 (M:Pt, Rh, Ru, Pd), ο ρυθμός της αντίδρασης ανά επιφανειακό άτομο Pt εξαρτάται από την ισχύ των θέσεων ρόφησης στη διεπιφάνεια μετάλλου/φορέα και περνάει από μέγιστο για μία ορισμένη τιμή της θερμοκρασίας εκρόφησης του υδρογόνου από τις θέσεις αυτές. Τα αποτελέσματα των πειραμάτων FTIR έδειξαν ότι η ενίσχυση των καταλυτών Pt/TiO2 με Na, Cs και CaO, οδηγεί σε αύξηση του πληθυσμού των ροφημένων ειδών CO στη διεπιφάνεια μετάλλου/φορέα. Το αντίθετο παρατηρείται για τον ενισχυμένο με WO3 καταλύτη. Για τους καταλύτες αυτούς καθώς και για τους Rh/TiO2 και M/Al2O3 (M: Pt, Ru, Pd), βρέθηκε ότι ο ρυθμός της αντίδρασης WGS αυξάνεται με ελάττωση της θερμοκρασίας διάσπασης των φορμικών ειδών. Τα αποτελέσματα υποδεικνύουν ότι η καταλυτική συμπεριφορά καθορίζεται σε μεγάλο βαθμό από τα φυσικοχημικά χαρακτηριστικά του φορέα, με τις καταλυτικά ενεργές θέσεις να εντοπίζονται στη διεπιφάνεια. Ο πληθυσμός και η ισχύς ρόφησης των ενεργών κέντρων και, επομένως, η καταλυτική ενεργότητα τροποποιούνται από τις αλληλεπιδράσεις μετάλλου/φορέα και από την ύπαρξη προωθητών. Η κινητική μελέτη της αντίδρασης WGS, σε καταλύτες Pt/TiO2 και Pt/0.34%Cs-TiO2, έδειξε ότι αύξηση της περιεκτικότητας του CO ή του Η2Ο στη τροφοδοσία οδηγεί σε αύξηση του ρυθμού, προσθήκη Η2 στην τροφοδοσία μειώνει σημαντικά τον ρυθμό ενώ το CO2 αφήνει το ρυθμό πρακτικά ανεπηρέαστο. Βρέθηκε ότι η αντίδραση είναι τάξης 0.5 ως προς CO, 1 ως προς Η2Ο, ~0 ως προς CO2 και ~-0.7 ως προς Η2. Τα κινητικά αποτελέσματα και για τους δύο καταλύτες προσαρμόζονται ικανοποιητικά σε εξίσωση ρυθμού που βασίζεται σε μηχανισμό ο οποίος περιλαμβάνει ρόφηση του H2O στο φορέα, ρόφηση των CO, Η2Ο, CO2 και Η2 στο μέταλλο, σχηματισμό ενδιάμεσων φορμικών ειδών στην επιφάνεια του φορέα και εκρόφηση των προϊόντων CO2 και H2. Τέλος μελετήθηκε η επίδραση του χρόνου επαφής στη συμπεριφορά καταλυτών 0.5%Pt/TiO2, 0.5%Pt/1%CaO-TiO2(Cal.600OC), 1%Pt/1%CaO-TiO2(Cal.600OC) και ενός εμπορικού καταλύτη και βρέθηκε ότι αύξηση του χρόνου επαφής (W/F) από 0.03 έως 0.20 × 3 g s/cm , οδηγεί σε σταδιακή αύξηση της μετατροπής του CO. Οι καταλύτες αυτοί υποβλήθησαν σε πειράματα μακροχρόνιας σταθερότητας, σε συνθήκες αντίδρασης, και από τα αποτελέσματα φαίνεται ότι η μετατροπή του CO παραμένει πρακτικά σταθερή για συνολικό χρόνο αντίδρασης περίπου 60 ώρες. Τα αποτελέσματα της παρούσας εργασίας μπορούν να χρησιμοποιηθούν για το «σχεδιασμό» και την ανάπτυξη καταλυτών οι οποίοι θα εκπληρώνουν τις προϋποθέσεις για χρήση σε εφαρμογές παραγωγής υδρογόνου για την τροφοδοσία κυψελίδων καυσίμου. / In the present study, a detailed investigation has been carried out in an attempt to identify the key physichochemical parameters which determine the catalytic activity of supported noble metal catalysts for the water-gas shift (WGS) reaction. A kinetic model, has been also developed, which can describe the kinetics of the reaction. The catalytic activity of supported noble metal catalysts (Pt, Rh, Ru, Pd) for the WGS reaction investigated with respect to the structural and morphological properties of the dispersed metallic phase and the support. It has been found that Pt catalysts are generally more active than Ru, Rh and Pd, and exhibit significantly higher activity when supported on “reducible” (TiO2, CeO2, La2O3, YSZ) rather than on “irreducible” (Al2O3, MgO, SiO2) metal oxides. Titania-supported platimum is more active than the well-studied Pt/CeO2 catalyst, especially in the temperature range of 200-250oC. When noble metals are dispersed on “reducible” oxides, such as CeO2 and TiO2, the apparent activation energy (Ea) of the reaction does not depend on the nature of the metallic phase but only on the nature of the support. In contrast, Ea differs from one metal to another when supported on an irreducible oxide, such as Al2O3, indicating that a different reaction mechanism is operable. Conversion of CO at a given temperature, for all metal-support combinations investigated, increases significantly with increasing metal loading in the range of 0.1-5.0 wt.%. However, activation energy and specific activity (TOF) do not depend on the morphological and structural characteristics of the metallic phase, such as loading, dispersion and crystallite size. The effect of the morphology of the support on catalytic performance has been investigated over Pt catalysts supported on four commercial titanium dioxide carriers with different structural characteristics (surface area, primary crystallite size of TiO2). It has been found that conversion of CO at low temperatures (<300oC) is significantly improved when Pt is dispersed on TiO2 samples of low crystallite size. The turnover frequency of CO increases by more than two orders of magnitude with decreasing crystallite size of TiO2 from 35 to 16 nm, with a parallel decrease of activation energy from 16.9 to 11.9 kcal/mol. This is attributed to the higher reducibility of smaller titania crystallites, as evidenced from the results of temperature programmed reduction (TPR) techniques and in situ Raman and FTIR spectroscopies. H2 and CO-TPR experiments, demonstrated that the reducibility of titania, increases with increasing the specific surface area of the catalyst or, conversely, with decreasing the primary particle size ze ( TiO2 d ) of the support. This has been proven by the results of in situ Raman experiments conducted under hydrogen flow which showed that formation of substoichiometric TiOx species initiates at lower temperatures and is more facile over Pt/TiO2 catalysts with smaller titania particle sizes. FTIR experiments provide evidence that the reaction takes place via interaction between CO and hydroxyl groups of the support, with intermediate production of formates. Partial reduction of the support results in the creation of new sites for CO adsorption, probably located at the metal/support interface, which have been tentatively assigned to metallic Pt in contact with Ti3+ ions. The observed enhancement of the WGS activity of Pt/TiO2 catalysts with increasing the reducibility of the support (decreasing TiO2 d ) may be explained by both the “regenerative” and the “associative” mechanism of the reaction. In contrast to what has been found over Pt/TiO2 catalysts, catalytic activity of dispersed Pt and the apparent activation energy of the reaction do not depend on the structural and morphological characteristics of CeO2, at least in the range of surface areas (3.3-57 m2/g) and primary crystallite sizes (10-32 nm) investigated. The catalytic performance of titania-supported platinum catalysts for the WGS reaction can be significantly improved by addition of small amounts of alkali (Na, K, Li, Cs) promoters. The catalyst promoted with Na exhibits better catalytic performance, compared to Li-, Cs- and K-promoted samples. It has been also found that, at least in the case of Na- and Cs-promoted catalysts, the specific catalytic activity (TOF) goes through a maximum for alkali:Pt atomic ratios of 1:1. The catalytic activity of Pt/TiO2 catalysts can be also improved by addition of alkaline earth (CaO, SrO, BaO, MgO) promoters. Optimal results were obtained for the catalysts promoted with 2 wt.% CaO and SrO, the specific activity (TOF) of which is about 2.5 times higher compared to that of the unpromoted catalyst. The results of H2-TPD experiments, over Na, Cs, CaO and WO3-promoted Pt/TiO2 catalysts and M/TiO2 (M:Pt, Rh, Ru, Pd) catalysts, demonstrated that the reaction rate (TOF) depends on the strength of the adsorption sites at the metal/support interface and goes through a maximum for a specific temperature of hydrogen desorption from theses sites. FTIR experiments provide evidence that the addition of Na, Cs and CaO over Pt/TiO2 catalysts results in an increase of the population of CO species adsorbed at the metal/support interface. It has also been found (CO-TPD experiments) that the turnover frequency of CO increases with decreasing the temperature of the decomposition of formate species, which may be produced by interaction between CO adsorbed on platinum with hydroxyl groups of TiO2 at the metal/support interface. The above results indicate that the catalytic performance of supported noble metal catalysts for the WGS reaction depends strongly on the physichochemical characteristics of the support. The population and the strength of the catalytic active sites, probably located at the metal/support interface, can be altered due the metal-support interactions and the presence of promoters. The kinetic investigation of the WGS reaction has being carried out over Pt/TiO2 and Pt/0.34%Cs-TiO2 catalysts. It was found that the reaction rate increases with increasing the partial pressure of CO or H2O in the feed composition. The addition of H2 in the reaction mixture results in a substantial decrease of the reaction rate, while the partial pressure of CO2 does not affect the reaction rate. It has also been found that the reaction order is 0.5, 1, ~-0.7 and ~0 for CO, H2O, H2 and CO2, respectively. The kinetic results were modelled by a rate expression based on a mechanism reaction, which includes H2O adsorption on the support, CO, H2O, H2 and CO2 adsorption on Pt, formation of intermediate formate species on the support and finally desorption of H2 and CO2. The effect of contact time on the catalytic performance has been investigated, under realistic reaction conditions, over 0.5%Pt/TiO2, 0.5%Pt/1%CaO-TiO2(Cal.600OC), 1%Pt/1%CaOTiO2 (Cal.600OC) and a commercial catalyst. It has been found that the conversion of CO at a given temperature increases with increasing W/F between 0.03 and 0.20 × 3 g s/cm. The conversion of CO of the above catalysts is remained constant, under reaction conditions, for about 60 hours. The results of the present study, can be used to develop active, selective and stable LT-WGS catalysts suitable for Fuel Cell applications.
2

Catalisadores à  base de metais não nobres formados por carbeto de tungstênio/carbono com estruturas FeNx e N/C para reação de redução do oxigênio / Catalysts based on non-noble metals formed by tungsten carbide/carbon with FeNx and N/C structures for oxygen reduction reaction

Rêgo, Ulisses Alves do 13 July 2018 (has links)
Este trabalho teve como objetivo investigar eletrocatalisadores de baixo custo à base de carbeto de tungstênio, carbono e ferro submetidos a diferentes processos de nitretação quanto à atividade catalítica para reação de redução do oxigênio (RRO) nos eletrólitos ácido e alcalino. Os catalisadores foram divididos em três séries distintas, a primeira compreendendo aqueles onde houve variação da carga de carbeto de tungstênio em relação ao suporte de carbono, que foram impregnados com o complexo Fe2+(2,4,6-Tris(2-piridil)-1,3,5-Triazina)2, [Fe(TPTZ)2]2+ e tratados em duas temperaturas diferentes, 700 e 800 oC em atmosfera de nitrogênio. Na segunda série foi mantida constante a carga de carbeto de tungstênio (30% de W/C, m/m) sendo que esta mescla foi preparada usando carbonos dopados previamente com três fontes distintas de nitrogênio (HNO3, NH3 e HNO3/NH3); isto foi seguido pela incorporação do complexo Fe[TPTZ]2+ e pelos mesmos tratamentos térmicos acima mencionados. Na terceira série, os eletrocatalisadores foram preparados com três tipos de carbonos (Vulcan, Ketjenblack e Monarch), aos quais foi incorporado o complexo Fe[TPTZ]2+, seguido pelo tratamento térmico a 800 °C em atmosfera de nitrogênio e então por dopagem com amônia a 950 °C. As três séries de eletrocatalisadores sintetizados neste trabalho foram cuidadosamente caracterizadas por espectroscopia infra-vermelho e UV-Visível, difratometria de raio-x, microscopia eletrônica de transmissão, energia dispersiva de raios-x, espectroscipia Raman, espectroscopia fotoeletrônica de raios-x. As investigações eletroquímicas foram realizadas por voltametria cíclica (VC) e pelo levantamento de curvas de polarização de estado estacionário para a RRO, usando a técnica de eletrodo de disco/anel rotatório, com materiais catalíticos formando filmes finos depositados no eletrodo de disco. Nas três séries de catalisadores foram desenvolvidos materiais com bom desempenho para a RRO. Nos estudos da primeira série de catalisadores, notou-se que o material mais ativo foi aquele formado por WC-FeNx/C com 30 % de W/C e 5% de Fe pirolisado a 800 °C. Na segunda série foi observado que os desempenhos dos catalisadores variaram de acordo com o tipo de protocolo de nitretação, presença de ferro e temperatura de tratamento térmico. Em eletrólito alcalino, os eletrocatalisadores apresentaram maiores desempenhos, que resultaram bastante próximos em relação ao do catalisador de Pt dispersa em carbono usado como referência. Na terceira série de eletrocatalisadores investigados, verificou-se que o melhor desempenho obtido foi com o catalisador com carbono Monarch com amônia, cuja atividade catalítica resultou superior à dos demais, devido ao maior número de estruturas ativas FeNx e N/C formadas pelo tratamento com amônia. Os resultados nos meios ácido e alcalino para a primeira e segunda séries de eletrocatalisadores sugerem a ocorrência de um mecanismo indireto (2e- + 2e-), ou seja, em meio ácido (alcalino) primeiro o O2 reduz para H2O2 (HO2 ) e depois de H2O2 (HO2 ) para H2O. Os sítios predominantemente envolvidos na catálise da reação são WC e FeNx em meio ácido e WC e N/C em meio alcalino. Finalmente, para a terceira série de eletrocatalisadores o mecanismo reacional em meio ácido envolve um mecanismo direto de 4e-, com participação importante dos sítios ativos de Fe-N2. / This work aims to investigate low cost electrocatalysts based on tungsten carbide, carbon and iron submitted to different nitriding processes for the catalytic activity for the oxygen reduction reaction (ORR) in acid and alkaline electrolytes. The catalysts were divided into three distinct series, the first one comprising those with different tungsten carbide loads with respect to the carbon support, which were impregnated with the Fe2+ (2,4,6-Tris (2-pyridyl) - 1,3,5-triazine)2, [Fe (TPTZ)]2+, complex and treated at two different temperatures, 700 and 800 oC in nitrogen atmosphere. In the second series, the tungsten carbide load (30% W/C, m/m) was kept constant but this mixture was prepared using previously doped carbons using three different sources of nitrogen (HNO3, NH3 and HNO3/NH3); this was followed by the incorporation of the Fe[TPTZ]2+ complex and by the same heat treatments as mentioned above. In the third series, the electrocatalysts were prepared with three carbon types (Vulcan, Ketjenblack and Monarch), to which the Fe[TPTZ]2+ complex was added, followed by heat treatment at 800 °C under nitrogen and then by nitriding using a flow of ammonia at 950 °C. The three series of electrocatalysts synthesized in this work were carefully characterized by infra-red and UV-Visible spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive, Raman spectroscopy, x-ray photoelectron spectroscopy. The electrochemical investigations were performed by cyclic voltammetry (CV) and by measurements of steady-state polarization curves for ORR using rotating ring-disc electrode technique, with catalytic materials forming thin films deposited on the disc. In the three catalyst series, materials with good performance for the ORR were developed. In the studies of the first series of catalysts, it was seen that the most active material was that formed by WC-FeNx/C with 30%W/C and 5% Fe pyrolyzed at 800 ° C. In the second series it was observed that the performances of the catalysts varied according to the type of nitriding protocol, presence of iron and temperature of heat treatment. The electrocatalysts showed higher performances in alkaline electrolyte, which were very close to that of a reference Pt/C catalyst. In the third series of electrocatalysts, the best performance was obtained with the Monarch carbon catalyst heat-treated with ammonia, whose catalytic activity was higher than all others, due to the greater number of FeNx and N/C active structures formed by the treatment with ammonia. The results in acidic and alkaline conditions for the first and second series of electrocatalysts suggest the occurrence of an indirect ORR mechanism (2e- + 2e-), that is, in acid (alkaline) media first O2 is reduced to H2O2 (HO2) followed by the reduction of H2O2 (HO2). The active sites predominantly involved in the reaction electrocatalysis are WC and FeNx in acid media and WC e N/C in alcaline media. Finally, for the third series of electrocatalysts, the acidic reaction involves a direct 4e- mechanism, having important participation of the Fe-N2 active sites.
3

Catalisadores à  base de metais não nobres formados por carbeto de tungstênio/carbono com estruturas FeNx e N/C para reação de redução do oxigênio / Catalysts based on non-noble metals formed by tungsten carbide/carbon with FeNx and N/C structures for oxygen reduction reaction

Ulisses Alves do Rêgo 13 July 2018 (has links)
Este trabalho teve como objetivo investigar eletrocatalisadores de baixo custo à base de carbeto de tungstênio, carbono e ferro submetidos a diferentes processos de nitretação quanto à atividade catalítica para reação de redução do oxigênio (RRO) nos eletrólitos ácido e alcalino. Os catalisadores foram divididos em três séries distintas, a primeira compreendendo aqueles onde houve variação da carga de carbeto de tungstênio em relação ao suporte de carbono, que foram impregnados com o complexo Fe2+(2,4,6-Tris(2-piridil)-1,3,5-Triazina)2, [Fe(TPTZ)2]2+ e tratados em duas temperaturas diferentes, 700 e 800 oC em atmosfera de nitrogênio. Na segunda série foi mantida constante a carga de carbeto de tungstênio (30% de W/C, m/m) sendo que esta mescla foi preparada usando carbonos dopados previamente com três fontes distintas de nitrogênio (HNO3, NH3 e HNO3/NH3); isto foi seguido pela incorporação do complexo Fe[TPTZ]2+ e pelos mesmos tratamentos térmicos acima mencionados. Na terceira série, os eletrocatalisadores foram preparados com três tipos de carbonos (Vulcan, Ketjenblack e Monarch), aos quais foi incorporado o complexo Fe[TPTZ]2+, seguido pelo tratamento térmico a 800 °C em atmosfera de nitrogênio e então por dopagem com amônia a 950 °C. As três séries de eletrocatalisadores sintetizados neste trabalho foram cuidadosamente caracterizadas por espectroscopia infra-vermelho e UV-Visível, difratometria de raio-x, microscopia eletrônica de transmissão, energia dispersiva de raios-x, espectroscipia Raman, espectroscopia fotoeletrônica de raios-x. As investigações eletroquímicas foram realizadas por voltametria cíclica (VC) e pelo levantamento de curvas de polarização de estado estacionário para a RRO, usando a técnica de eletrodo de disco/anel rotatório, com materiais catalíticos formando filmes finos depositados no eletrodo de disco. Nas três séries de catalisadores foram desenvolvidos materiais com bom desempenho para a RRO. Nos estudos da primeira série de catalisadores, notou-se que o material mais ativo foi aquele formado por WC-FeNx/C com 30 % de W/C e 5% de Fe pirolisado a 800 °C. Na segunda série foi observado que os desempenhos dos catalisadores variaram de acordo com o tipo de protocolo de nitretação, presença de ferro e temperatura de tratamento térmico. Em eletrólito alcalino, os eletrocatalisadores apresentaram maiores desempenhos, que resultaram bastante próximos em relação ao do catalisador de Pt dispersa em carbono usado como referência. Na terceira série de eletrocatalisadores investigados, verificou-se que o melhor desempenho obtido foi com o catalisador com carbono Monarch com amônia, cuja atividade catalítica resultou superior à dos demais, devido ao maior número de estruturas ativas FeNx e N/C formadas pelo tratamento com amônia. Os resultados nos meios ácido e alcalino para a primeira e segunda séries de eletrocatalisadores sugerem a ocorrência de um mecanismo indireto (2e- + 2e-), ou seja, em meio ácido (alcalino) primeiro o O2 reduz para H2O2 (HO2 ) e depois de H2O2 (HO2 ) para H2O. Os sítios predominantemente envolvidos na catálise da reação são WC e FeNx em meio ácido e WC e N/C em meio alcalino. Finalmente, para a terceira série de eletrocatalisadores o mecanismo reacional em meio ácido envolve um mecanismo direto de 4e-, com participação importante dos sítios ativos de Fe-N2. / This work aims to investigate low cost electrocatalysts based on tungsten carbide, carbon and iron submitted to different nitriding processes for the catalytic activity for the oxygen reduction reaction (ORR) in acid and alkaline electrolytes. The catalysts were divided into three distinct series, the first one comprising those with different tungsten carbide loads with respect to the carbon support, which were impregnated with the Fe2+ (2,4,6-Tris (2-pyridyl) - 1,3,5-triazine)2, [Fe (TPTZ)]2+, complex and treated at two different temperatures, 700 and 800 oC in nitrogen atmosphere. In the second series, the tungsten carbide load (30% W/C, m/m) was kept constant but this mixture was prepared using previously doped carbons using three different sources of nitrogen (HNO3, NH3 and HNO3/NH3); this was followed by the incorporation of the Fe[TPTZ]2+ complex and by the same heat treatments as mentioned above. In the third series, the electrocatalysts were prepared with three carbon types (Vulcan, Ketjenblack and Monarch), to which the Fe[TPTZ]2+ complex was added, followed by heat treatment at 800 °C under nitrogen and then by nitriding using a flow of ammonia at 950 °C. The three series of electrocatalysts synthesized in this work were carefully characterized by infra-red and UV-Visible spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive, Raman spectroscopy, x-ray photoelectron spectroscopy. The electrochemical investigations were performed by cyclic voltammetry (CV) and by measurements of steady-state polarization curves for ORR using rotating ring-disc electrode technique, with catalytic materials forming thin films deposited on the disc. In the three catalyst series, materials with good performance for the ORR were developed. In the studies of the first series of catalysts, it was seen that the most active material was that formed by WC-FeNx/C with 30%W/C and 5% Fe pyrolyzed at 800 ° C. In the second series it was observed that the performances of the catalysts varied according to the type of nitriding protocol, presence of iron and temperature of heat treatment. The electrocatalysts showed higher performances in alkaline electrolyte, which were very close to that of a reference Pt/C catalyst. In the third series of electrocatalysts, the best performance was obtained with the Monarch carbon catalyst heat-treated with ammonia, whose catalytic activity was higher than all others, due to the greater number of FeNx and N/C active structures formed by the treatment with ammonia. The results in acidic and alkaline conditions for the first and second series of electrocatalysts suggest the occurrence of an indirect ORR mechanism (2e- + 2e-), that is, in acid (alkaline) media first O2 is reduced to H2O2 (HO2) followed by the reduction of H2O2 (HO2). The active sites predominantly involved in the reaction electrocatalysis are WC and FeNx in acid media and WC e N/C in alcaline media. Finally, for the third series of electrocatalysts, the acidic reaction involves a direct 4e- mechanism, having important participation of the Fe-N2 active sites.

Page generated in 0.095 seconds