• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 17
  • 17
  • 10
  • 9
  • 8
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 170
  • 32
  • 23
  • 22
  • 21
  • 17
  • 17
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Ação do análogo de purina tóxico tubercidina em Leishmania ssp. / Action of tubercidin a toxic purine analogue in Leishmania spp

Aoki, Juliana Ide 20 August 2008 (has links)
A identificação de genes relacionados com resistência a compostos antiparasitários tem contribuído para um melhor entendimento do mecanismo de ação de alguns desses compostos. Utilizando a estratégia que permite a indução de super-expressão após transfecção gênica, isolamos dois loci relacionados com resistência ao análogo tóxico de purina, tubercidina (TUB). Em um desses locus identificamos um ortólogo do gene TOR (TOxic nucleoside Resistance) em L. (L.) major (TOR-Lm), capaz de conferir altos níveis de resistência a TUB. A identificação e localização cromossomal do segundo locus foi obtida, mas os testes funcionais em presença de TUB não foram tão significativos quanto os obtidos após a transfecção do TOR-Lm. Na segunda parte desta dissertação avaliamos a eficácia da associação de TUB com um inibidor específico do transporte de nucleosídeos em mamíferos, nitrobenziltioinosina (NBMPR), visando reverter a toxicidade de TUB apenas no hospedeiro. Demonstramos que TUB tem uma potente ação anti-parasitária em culturas de Leishmania spp., e que o inibidor NBMPR é capaz de proteger células mamíferas de camundongos infectados da ação tóxica de TUB. / Gene identification associated with drug resistance has contributed to a better understanding of the mechanism of action of anti parasitic compounds. Using transfection and over-expression selection strategy we isolated two loci related with the resistance of tubercidin (TUB), a toxic analog purine. In the first locus we identified an ortholog of the TOR gene (TOxic nucleoside Resistance) in L. (L.) major (TOR-Lm), capable to render wild cells resistance to TUB after transfection and over-expression. Chromosomal location and identification of the second locus was done, but functional tests in the presence of TUB were not as significant as those obtained after TOR-Lm transfection. In the second part of this work, we evaluate the effectiveness of the association of TUB with an inhibitor specific to the mammals nucleoside transport, as nitrobenzylthioinosine (NBMPR), aimed at reversing the TUB toxicity only on the host. We first demonstrate that TUB has a potent anti-parasitic action in cultures of Leishmania spp. Then, we discuss the capacity of the NBMPR inhibitor to protect infected macrophages from the toxic effects of TUB.
32

Myocardial energy metabolism in ischemic preconditioning, role of adenosine catabolism

Kavianipour, Mohammad January 2002 (has links)
<p>Brief episodes of ischemia and reperfusion render the myocardium more resistant to necrosis from a subsequent, otherwise lethal ischemic insult. This phenomenon is called ischemic preconditioning(IP). Today, much is known about the signalling pathways involved in IP; however, the details of the final steps leading to cardioprotection, remain elusive. Adenosine (a catabolite of ATP) plays a major role in the signalling pathways of IP. Following IP there is an unexplained discrepancy between an increased adenosine production (evidenced by increased 5’-nucleotidase activity) and the successively lower adenosine levels observed in the interstitial space. We propose that this discrepancy in adenosine production vs. availability may be due to an increased metabolic utilisation of adenosine by the IP myocardium. According to our hypothesis, IP induces/activates a metabolic pathway involving deamination of adenosine to inosine. Inosine is further catalysed (in presence of Pi) to hypoxanthine and ribose-1-phosphate. Ribose-1-phosphate can be converted to ribose-5-phosphate in a phosphoribomutase reaction. Ribose-5-phosphate is an intermediate of the hexose monophosphate pathway also operative under anaerobic conditions. Hence the ribose moiety of adenosine can be utilised to generate pyruvate and ultimately ATP (via lactate formation) n.b. without any initial ATP investment. Such cost-effective adenosine utilisation may at least partly explain the cardioprotective effect of IP. Objectives & Methods: In the current studies we investigated the role of adenosine metabolism according to the suggested metabolic pathway by addition of adenosine and inhibition of its metabolism during IP as well as by comparing tissue and interstitial levels of key energy-metabolites following different protocols of IP. Furthermore, we studied the importance of the IP protocol with regard to the number of ischemia and reperfusion cycles for the cardioprotective effect of IP. In addition, the validity of the microdialysis technique for experimental in vivo studies of myocardial energy metabolism was evaluated. For these purposes the microdialysis technique, tissue biopsies, and planimetric infarct size estimation in an open chest porcine heart-model was used. Results: Addition of adenosine via microdialysis probes enhanced the interstitial release of inosine, hypoxanthine and lactate in the myocardium of IP-subjects during prolonged ischemia. This finding did not occur in non-preconditioned subjects. Similar addition of deoxyadenosine a non-metabolizable adenosine receptor-agonist, did not evoke the same metabolic response. Purine nucleoside phosphorylase (PNP) is responsible for the conversion of inosine to hypoxanthine being a key enzyme in the above mentioned metabolic pathway. Inclusion of 8' aminoguanosine (a competitive inhibitor of PNP) decreased interstitial hypoxanthine release (as a token of PNP inhibition) and increased the release of taurine (marker of cellular injury) in the ischemic IP myocardium. Addition of inosine (a natural substrate of PNP) reverted these changes. Four IP cycles protected the heart more than one IP cycle as evidenced by morphometric and energy-metabolic data.Proportionally more hypoxanthine was found in the myocardium of IP subjects during prolonged ischemia. The ratio of tissue levels of inosine/hypoxanthine (used as an indicator of PNP activity) was significantly smaller in the IP groups. In addition, myocardial interstitial levels of energy-related metabolites (lactate, adenosine, inosine, and hypoxanthine) obtained by the microdialysis technique correlated with tissue biopsy levels of corresponding metabolites. Conclusions: IP activated a metabolic pathway favouring metabolism of exogenous adenosine to inosine, hypoxanthine and eventually lactate. Inhibition of adenosine metabolism following IP (via inhibition of PNP-activity resulted in enhanced cellular injury.</p><p>PNP-activity is proportionally higher in IP-myocardium. Metabolic utilisation of adenosine in IP-myocardium (as outlined above) may represent a costeffective way to produce ATP and at least partly explain the cardioprotective effect of IP. IP protects the myocardium in a graded fashion. Furthermore, we confirmed the validity of the microdialysis technique (in the current setting) for studying dynamic changes of myocardial energy metabolism.</p>
33

Characterization of transport of positron emission tomography tracer 3-deoxy-3-fluorothymidine by nucleoside transporters

Paproski, Robert Joseph 06 1900 (has links)
Positron emission tomography (PET) tracer 3-fluoro-3-deoxythymidine (FLT) is used for imaging tumor proliferation. Prior to this work, human equilibrative nucleoside transporter 1 (hENT1) was the only known human nucleoside transporter (hNT) capable of FLT transport. The aim of this research was to determine if other hNTs, including hENT2, human concentrative nucleoside transporter 1 (hCNT1), hCNT2 and hCNT3, were capable/important of/for FLT transport in mammalian cells. Transport assays performed in Xenopus laevis oocytes producing recombinant hNTs demonstrated that hENT1/2 and hCNT1/3 were capable of FLT transport. FLT uptake assays with or without hENT1 inhibitor nitrobenzylmercaptopurine ribonucleoside (NBMPR) in various cultured cancer cell lines demonstrated that hENT1 was responsible for the majority of mediated FLT uptake in all tested cell lines, suggesting that hENT1 was important for FLT uptake. The in vivo role of hENT1 in FLT uptake was determined by performing [18F]FLT PET on wild-type and ENT1 knockout mice. One hour after [18F]FLT injection, ENT1 knockout mice displayed significantly reduced [18F]FLT accumulation in the blood, heart, brain, kidney, liver, and lungs compared to wild-type mice. Interestingly, ENT1 knockout mice displayed increased [18F]FLT accumulation in the bone marrow and spleen which both have high CNT expression, suggesting that loss of ENT1 significantly alters FLT biodistribution in mice. hENT1 is a predictive marker of gemcitabine response in pancreatic cancers. Since FLT uptake and gemcitabine toxicity are dependent on hENT1, FLT uptake may predict gemcitabine response in pancreatic cancers. To test this hypothesis, six different pancreatic cancer cell lines were analyzed for FLT uptake and gemcitabine toxicity. hENT1/2 inhibition in cells decreased FLT uptake and gemcitabine sensitivity. In five of six cell lines, a positive correlation was observed between FLT uptake and gemcitabine toxicity, suggesting that FLT PET may be clinically useful for predicting gemcitabine response in pancreatic cancers. The results from this research suggest that hNTs, especially hENT1, are important for FLT uptake in mammalian cells and that FLT uptake can predict gemcitabine response in most cultured pancreatic cancer cells. The results warrant FLT PET clinical trials in pancreatic cancer patients to determine the potential of FLT PET in predicting gemcitabine response.
34

Myocardial energy metabolism in ischemic preconditioning, role of adenosine catabolism

Kavianipour, Mohammad January 2002 (has links)
Brief episodes of ischemia and reperfusion render the myocardium more resistant to necrosis from a subsequent, otherwise lethal ischemic insult. This phenomenon is called ischemic preconditioning(IP). Today, much is known about the signalling pathways involved in IP; however, the details of the final steps leading to cardioprotection, remain elusive. Adenosine (a catabolite of ATP) plays a major role in the signalling pathways of IP. Following IP there is an unexplained discrepancy between an increased adenosine production (evidenced by increased 5’-nucleotidase activity) and the successively lower adenosine levels observed in the interstitial space. We propose that this discrepancy in adenosine production vs. availability may be due to an increased metabolic utilisation of adenosine by the IP myocardium. According to our hypothesis, IP induces/activates a metabolic pathway involving deamination of adenosine to inosine. Inosine is further catalysed (in presence of Pi) to hypoxanthine and ribose-1-phosphate. Ribose-1-phosphate can be converted to ribose-5-phosphate in a phosphoribomutase reaction. Ribose-5-phosphate is an intermediate of the hexose monophosphate pathway also operative under anaerobic conditions. Hence the ribose moiety of adenosine can be utilised to generate pyruvate and ultimately ATP (via lactate formation) n.b. without any initial ATP investment. Such cost-effective adenosine utilisation may at least partly explain the cardioprotective effect of IP. Objectives &amp; Methods: In the current studies we investigated the role of adenosine metabolism according to the suggested metabolic pathway by addition of adenosine and inhibition of its metabolism during IP as well as by comparing tissue and interstitial levels of key energy-metabolites following different protocols of IP. Furthermore, we studied the importance of the IP protocol with regard to the number of ischemia and reperfusion cycles for the cardioprotective effect of IP. In addition, the validity of the microdialysis technique for experimental in vivo studies of myocardial energy metabolism was evaluated. For these purposes the microdialysis technique, tissue biopsies, and planimetric infarct size estimation in an open chest porcine heart-model was used. Results: Addition of adenosine via microdialysis probes enhanced the interstitial release of inosine, hypoxanthine and lactate in the myocardium of IP-subjects during prolonged ischemia. This finding did not occur in non-preconditioned subjects. Similar addition of deoxyadenosine a non-metabolizable adenosine receptor-agonist, did not evoke the same metabolic response. Purine nucleoside phosphorylase (PNP) is responsible for the conversion of inosine to hypoxanthine being a key enzyme in the above mentioned metabolic pathway. Inclusion of 8' aminoguanosine (a competitive inhibitor of PNP) decreased interstitial hypoxanthine release (as a token of PNP inhibition) and increased the release of taurine (marker of cellular injury) in the ischemic IP myocardium. Addition of inosine (a natural substrate of PNP) reverted these changes. Four IP cycles protected the heart more than one IP cycle as evidenced by morphometric and energy-metabolic data.Proportionally more hypoxanthine was found in the myocardium of IP subjects during prolonged ischemia. The ratio of tissue levels of inosine/hypoxanthine (used as an indicator of PNP activity) was significantly smaller in the IP groups. In addition, myocardial interstitial levels of energy-related metabolites (lactate, adenosine, inosine, and hypoxanthine) obtained by the microdialysis technique correlated with tissue biopsy levels of corresponding metabolites. Conclusions: IP activated a metabolic pathway favouring metabolism of exogenous adenosine to inosine, hypoxanthine and eventually lactate. Inhibition of adenosine metabolism following IP (via inhibition of PNP-activity resulted in enhanced cellular injury. PNP-activity is proportionally higher in IP-myocardium. Metabolic utilisation of adenosine in IP-myocardium (as outlined above) may represent a costeffective way to produce ATP and at least partly explain the cardioprotective effect of IP. IP protects the myocardium in a graded fashion. Furthermore, we confirmed the validity of the microdialysis technique (in the current setting) for studying dynamic changes of myocardial energy metabolism.
35

The Effects of Purine Nucleoside Phosphorylase (PNP) Deficiency on Thymocyte Development

Papinazath, Taniya 27 July 2010 (has links)
PNP is a crucial enzyme in purine metabolism, and its inherited defects result in severe T-lineage immune deficiency in humans. I hypothesized that PNP deficiency disrupts the development of late CD4-CD8- double negative (DN) thymocytes and induces mitochondrial-mediated apoptosis of CD4+CD8+ double positive (DP) thymocytes. By using PNP-deficient (PNP-/-) mice as well as an OP9-DL1 co-culture system simulating PNP-deficient conditions, I demonstrated that PNP deficiency interferes with the maturation of DN thymocytes at the transition from DN3 to DN4 stage. Although PNP deficiency does not affect the generation or proliferation of DP thymocytes, PNP-/- DP thymocytes were observed to undergo apoptosis at a higher rate. My results suggest that apoptosis is induced through a mitochondrial mediated pathway. Additionally, re-introduction of PNP into PNP-/- thymocytes protected the cells from the toxic effects of deoxyguanosine by preventing the formation of deoxyguanosine triphosphate, indicating that the toxic metabolite in PNP deficiency is deoxyguanosine.
36

The Effects of Purine Nucleoside Phosphorylase (PNP) Deficiency on Thymocyte Development

Papinazath, Taniya 27 July 2010 (has links)
PNP is a crucial enzyme in purine metabolism, and its inherited defects result in severe T-lineage immune deficiency in humans. I hypothesized that PNP deficiency disrupts the development of late CD4-CD8- double negative (DN) thymocytes and induces mitochondrial-mediated apoptosis of CD4+CD8+ double positive (DP) thymocytes. By using PNP-deficient (PNP-/-) mice as well as an OP9-DL1 co-culture system simulating PNP-deficient conditions, I demonstrated that PNP deficiency interferes with the maturation of DN thymocytes at the transition from DN3 to DN4 stage. Although PNP deficiency does not affect the generation or proliferation of DP thymocytes, PNP-/- DP thymocytes were observed to undergo apoptosis at a higher rate. My results suggest that apoptosis is induced through a mitochondrial mediated pathway. Additionally, re-introduction of PNP into PNP-/- thymocytes protected the cells from the toxic effects of deoxyguanosine by preventing the formation of deoxyguanosine triphosphate, indicating that the toxic metabolite in PNP deficiency is deoxyguanosine.
37

Regulation of adenosine transporter and AMPA receptor subunit localization by protein kinase CK2 in rat hippocampus

Longmuir, Nicole 25 July 2011
The control of extracellular adenosine is crucial to the regulation of synaptic transmission and neuroprotection. Equilibrative nucleoside transporters (ENTs) are highly expressed in the hippocampus and widely accepted as critical regulators of adenosine tone. However, the mechanisms regulating the surface distribution and transport function of ENTs are largely unknown. Since ENT1 and ENT2 contain consensus sequences for phosphorylation by protein kinase CK2, and because this protein has been reported to regulate synaptic plasticity and ENT function in non-neuronal systems, the present thesis outlines the hypothesis that CK2-induced phosphorylation of ENTs is important for their cellular localization and thus the regulation of adenosine tone and synaptic transmission. Here, a functional interaction between adenosine CK2, ENTs and AMPA receptors in the hippocampus is reported. Western blot analysis shows that a variety of CK2 inhibitors (DMAT, TBB and DRB) significantly reduced the density of ENT1 and ENT2 proteins in hippocampal membrane fractions, suggesting that CK2-mediated phosphorylation of ENTs promotes their surface localization. In contrast, it was found that the ENT1 inhibitor NBTI significantly increased in the membrane localization of ENT1, relative to the control. Moreover, ENTs were found to immunoprecipitate with GluR1 and GluR2-containing AMPA receptors; and CK2 inhibitors caused a decrease in the membrane localization of GluR2 and GluR1 AMPA receptors. These results suggest a novel signaling complex linking CK2-regulated adenosine transport to AMPA receptor trafficking in the rat hippocampus. Although the physiological significance of these findings requires further investigation, this thesis provides insight into an adenosine regulation pathway that may be important for the regulation of synaptic transmission and neuroprotection in the rat hippocampus.
38

Regulation of adenosine transporter and AMPA receptor subunit localization by protein kinase CK2 in rat hippocampus

Longmuir, Nicole 25 July 2011 (has links)
The control of extracellular adenosine is crucial to the regulation of synaptic transmission and neuroprotection. Equilibrative nucleoside transporters (ENTs) are highly expressed in the hippocampus and widely accepted as critical regulators of adenosine tone. However, the mechanisms regulating the surface distribution and transport function of ENTs are largely unknown. Since ENT1 and ENT2 contain consensus sequences for phosphorylation by protein kinase CK2, and because this protein has been reported to regulate synaptic plasticity and ENT function in non-neuronal systems, the present thesis outlines the hypothesis that CK2-induced phosphorylation of ENTs is important for their cellular localization and thus the regulation of adenosine tone and synaptic transmission. Here, a functional interaction between adenosine CK2, ENTs and AMPA receptors in the hippocampus is reported. Western blot analysis shows that a variety of CK2 inhibitors (DMAT, TBB and DRB) significantly reduced the density of ENT1 and ENT2 proteins in hippocampal membrane fractions, suggesting that CK2-mediated phosphorylation of ENTs promotes their surface localization. In contrast, it was found that the ENT1 inhibitor NBTI significantly increased in the membrane localization of ENT1, relative to the control. Moreover, ENTs were found to immunoprecipitate with GluR1 and GluR2-containing AMPA receptors; and CK2 inhibitors caused a decrease in the membrane localization of GluR2 and GluR1 AMPA receptors. These results suggest a novel signaling complex linking CK2-regulated adenosine transport to AMPA receptor trafficking in the rat hippocampus. Although the physiological significance of these findings requires further investigation, this thesis provides insight into an adenosine regulation pathway that may be important for the regulation of synaptic transmission and neuroprotection in the rat hippocampus.
39

Neuartige Lipid-Konjugate zur Funktionalisierung von Phospholipidmembranen

Brodersen, Nicolai Johannes Christopher January 2009 (has links)
Zugl.: Berlin, Humboldt-Univ., Diss., 2009
40

Characterization of transport of positron emission tomography tracer 3′-deoxy-3′-fluorothymidine by nucleoside transporters

Paproski, Robert Joseph Unknown Date
No description available.

Page generated in 0.027 seconds