• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Non-photic Zeitgebers on the Circadian Clock in the Common House Spider, Parasteatoda tepidariorum (Araneae: Theridiidae)

Garmany, Mattea, Moore, Darrell, Jones, Thomas C. 01 May 2020 (has links)
Circadian rhythms are endogenous cycles that control physiological and behavioral changes that can be affected by environmental factors which allow most eukaryotic organisms to synchronize their daily activities with the 24-hour day. Parasteatoda tepidariorum,the common house spider, demonstrates a short-period circadian clock averaging 21.6 hours when left in constant darkness, yet they are able to entrain to a 24-hour light cycle. We tested whether these spiders were able to use non-photic Zeitgebers to entrain to the 24-hour day. Periodic presentation of food and disturbance were not found to be effective cues for the spiders’ entrainment. A few individuals were clearly able to entrain to an 8 oC amplitude temperature cycle, while most did not.
2

Vývoj cirkadiánního systému potkana v podmínkách stálého světla / Development of the rat circadian system under constant light conditions

Petrželková, Lucie January 2021 (has links)
The circadian system is a mechanism designed to generate circadian time and to synchronize it with the solar cycle. Its function is to adjust to behavioral and physiological function with the 24-hour period. The adjustment is performed using a so-called zeitgeber or synchronizer. The main circadian clock is in the suprachiasmatic nuclei (SCN) in the hypothalamus. Prolonged exposure of the organism to constant light conditions results in desynchronization of the circadian clock, which can lead to many pathologies. The impact of light at night on the organism has been studied for a long time, but the question of the impact of constant light on the development of the circadian system of the organism has been less studied. My thesis deals with this issue. Using RT-qPCR I investigated how the rhytm changes in the expression of selected clock genes in selected parts of the rat's brain, which has been kept in constant light sice birth. I also tested the impact of exposure to constant light on the early development of rhytm in locomotor activity later in the rat's life. Keywords: circadian system, photic entrainment, desynchronization under constant light, development, rat

Page generated in 0.1103 seconds