• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-random dispersal by ants : long-term field data versus model predictions of population spread of a forest herb

Heinken, Thilo, Winkler, Eckart January 2009 (has links)
Myrmecochory, i.e. dispersal of seeds by ants towards and around their nests, plays an important role in temperate forests. Yet hardly any study has examined plant population spread over several years and the underlying joint contribution of a hierarchy of dispersal modes and plant demography. We used a seed-sowing approach with three replicates to examine colonization patterns of Melampyrum pratense, an annual myrmecochorous herb, in a mixed Scots pine forest in northeastern Germany. Using a spatially explicit individualbased (SEIB) model population patterns over 4 years were explained by short-distance transport of seeds by small ant species with high nest densities, resulting in random spread. However, plant distributions in the field after another 4 years were clearly deviating from model predictions. Mean annual spread rate increased from 0.9 m to 5.1 m per year, with a clear inhomogeneous component. Obviously, after a lag-phase of several years, non-random seed dispersal by large red wood ants (Formica rufa) was determining the species’ spread, thus resulting in stratified dispersal due to interactions with different-sized ant species. Hypotheses on stratified dispersal, on dispersal lag, and on non-random dispersal were verified using an extended SEIB model, by comparison of model outputs with field patterns (individual numbers, population areas, and maximum distances). Dispersal towards red wood ant nests together with seed loss during transport and redistribution around nests were essential features of the model extension. The observed lag-phase in the initiation of non-random, medium-distance transport was probably due to a change of ant behaviour towards a new food source of increasing importance, being a meaningful example for a lag-phase in local plant species invasion. The results demonstrate that field studies should check model predictions wherever possible. Future research will show whether or not the M. pratense–ant system is representative for migration patterns of similar animal dispersal systems after having crossed range edges by long-distance dispersal events.

Page generated in 0.0816 seconds