• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 306
  • 98
  • 51
  • 36
  • 34
  • 17
  • 10
  • 9
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 688
  • 102
  • 101
  • 99
  • 86
  • 66
  • 66
  • 60
  • 58
  • 57
  • 52
  • 47
  • 47
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

A Non Resonant Piezoelectric Sensor for Mass, Force and Stiffness Measurements

Shrikanth, V January 2015 (has links) (PDF)
The word piezo in greek means \to compress". Piezoelectric sensors work on the principle of direct piezoelectric effect, where a mechanical input generates a corresponding electric charge. The advantages of these sensors are wide fre-quency range of operation, high stiffness and small size. The main limitation of a piezoelectric sensor is that it cannot be used in measurements that are truly static. When a piezoelectric sensor is subjected to a static force, a fixed amount of charge is developed which would eventually decay at a rate dependent on the external impedance of the sensor circuitry. Operating sensors at resonance have been one of the methods to overcome the limitation of using piezoelectric sensors for static measurements. However, since both actuation and sensing are done by the same piezoelectric element, this results in a cross-talk of input and output signals. The drawback of using single piezoelectric element for actuation and sensing is overcome in this work by using two identical elements|one for actuation and one for sensing. The operating frequency is about 10 % of the natural frequency of the sensor, thus enabling to operate the sensor in non resonant mode. Since the actuation and sensing mechanisms are separated, static measurement can be carried out. The output signal from the sensing element is monitored by a Lock-in amplifier which works on the principle of phase sensitive detection. The advantage of this sensor design is high sensitivity along with narrow band detection. It can be shown that the voltage output of the sensor Vout / a1 + m(b1 + b2F + b3K) + c1F + d1K, where m and K are the external mass and interaction stiffness, respectively, F is the force acting on it. By maintaining any two of these three quantities constant, the remaining one can be measured without any difficulty. The non resonant mode of operation makes it possible to explore the potential of this sensor in investigating mechanics of solid-liquid (viscous), solid-solid (inelastic) and solid-tissue(viscoelastic) interactions. High sensitivity, wide range of measurement (1 g{1 g) and high resolutio(0.1 g) of the non resonant mass sensor makes it possible to use it in measure-ment of very small masses of the order 1 g. Typically, resonant sensors such as quartz crystal microbalance (QCM) are used for mass measurements at that range. However, since the performance of resonant sensors is controlled by damp-ing, a phenomenon known as `missing mass effect' arises. Operating a sensor in non resonant mode (stiffness controlled mode) is a way to overcome this problem, especially when the mass is viscous and/or viscoelastic in nature. Drosophila fly, egg and larvae are the viscoelastic masses that are measured using this non res-onant sensor. Evaporating sessile drops of water and Cetyl trimethylammonium bromide (CTAB) surfactant solution from nominally flat surfaces are monitored to characterize the sensor for viscous mass measurement. Evaporation rate per unit surface area remains more or less constant, during the initial stages of evap-oration. When the surfactant concentration is varied, evaporation rate per unit surface area is highest for solutions around critical miscelle concentration (CMC). A study is carried out to understand the effect of concentrations on spreading of ink over inkjet printing paper. It is found that the spreading is least around CMC, since spreading is dependent on the rate of evaporation. The non resonant piezoelectric sensor which has high stiffness and quick re-sponse is also capable of measuring very small frictional forces. This sensor is configured to work as an inertial slider. Friction measurement at micro scales is important for designing microsystems such as stick-slip actuators. At such length scales, experiments have to performed at low loads and high excitation frequencies. The support stiffness of such systems should be high and the force of friction generated during slipping, when displacements are smaller than the contact radius, are of the order of few N. The displacement during slipping (S) is dependent on the amplitude of the input voltage to the actuation element. The frictional force measured during slipping by the sensor element indicates that the co-efficient of friction ( ) is independent of the sliding velocity. The developed non resonant sensor in this work under small amplitude exci-tation, can measure force gradient (i.e. stiffness). The total force generated when a needle is inserted into a viscoelastic material is a sum of force due to stiffness of the material, friction and the cutting force at the tip. The force due to stiffness is dominant when the needle is bending the tissue before the puncture occurs. Use of the non resonant sensor in tandem with strain gauge force sensor enables distinguishing the three components of the total force. The slope of the force-displacement (F -d) curve during the initial stages of needle penetration into the viscoelastic material, before puncture, is indicative of the stiffness of the mate-rial. The peak force measured during penetration is higher for needles with larger diameters and lower insertion velocities. The viscoelastic response (relaxation) of the material remains independent of the insertion velocity, for a given thickness of the material and a constant needle diameter. In summary, the sensor designed and developed in this work operates in stiffness controlled mode to eliminate the `missing mass effect' encountered dur-ing resonant mode of operation, has been clearly highlighted. Mass, force and stiffness measurements are possible over a wide range just by varying the ampli-tude of the input signal to the actuator element. The advantages such as high stiffness, small size and high response makes it advantageous to carry out in-situ micro scale studies in scanning electron microscopy (SEM) and transmission electron microscopy (TEM).
152

Modelagem de dispositivos ópticos em escala nanométrica / Modeling of optical devices in nano scale

Lorena Orsoni Diniz 06 October 2010 (has links)
Dispositivos fotônicos têm estado continuamente no foco das pesquisas científicas, particularmente em aplicações para comunicações ópticas e sensoriamento. Por outro lado, as dimensões desses dispositivos são restringidas pelo limite de difração de Abbe. Esse limite tem se mostrado como o grande gargalo no desenvolvimento de novas tecnologias em microscopia óptica, litografia de projeção óptica, óptica integrada, e armazenamento óptico de dados, por limitar as dimensões e a capacidade de integração destes dispositivos. Felizmente, a \"plasmônica\" surgiu como um novo campo de estudo, possibilitando a superação dessa limitação por meio da propagação da luz em modos de plasmon-poláritons de superfície - SPP (Surface Plasmon Polariton). De maneira simplificada, SPPs são campos eletromagnéticos confinados em regiões menores que o comprimento de onda da luz. A geração de SPP ocorre por meio da excitação coletiva de elétrons na interface entre dois meios, metal-dielétrico, que se acoplam com a onda eletromagnética incidente. Pesquisadores logo perceberam que guias de onda baseados em SPP poderiam transportar a mesma banda de informação que um dispositivo fotônico convencional e serem tão localizados quanto dispositivos eletrônicos (elétrons têm maior capacidade de confinamento que fótons). Dessa maneira, alterando a estrutura da superfície de um metal, as propriedades dos SPPs - em particular sua interação com a luz - podem ser manipuladas, oferecendo potencial para o desenvolvimento de novos tipos de dispositivos fotônicos. Com isso, nanoestruturas capazes de guiar, dividir ou mesmo sintonizar a luz tornaram-se realidade. No presente trabalho, o fenômeno de geração de SPPs é estudado teoricamente e aplicado na modelagem de diversas estruturas de interesse científico e tecnológico, tais como filtros de cavidade ressonante e ressoadores em anel. O objetivo principal é a obtenção de estruturas capazes de filtrar ou sintonizar comprimentos de onda, minimizando as perdas ao máximo. Com isso, espera-se estender e explorar ainda mais o leque de possíveis aplicações. / Photonic devices have continuously been in the focus of scientific research, particularly for optical communications and sensing applications. On the other hand, the dimensions of these devices are well known to be limited by the Abbe\'s diffraction limit. This limit has been the major bottleneck in developing new technologies in optical microscopy, lithography projection optics, integrated optics, and optical data storage, as it limits the size and ability to integrate these devices. Fortunately, the field of \"Plasmonics\" has emerged and devices whose dimensions overcome the difraction limit have now become reality. This is possible with the propagation of light in the form of Surface Plasmon Polariton - SPP that, in a simplified way, is an electromagnetic field confined in regions smaller than the wavelength of light. SPP occurs via collective excitation of electrons at the interface between two media, metal-dielectric, as a result of the coupling with an incident electromagnetic wave. Researchers soon realized that waveguides based on SPP could carry the same band of information as that of a conventional photonic device and yet be as localized as electronic devices (electrons have a greater capacity for confinement than photons). Thus, changing the structure of the surface of a metal, the properties of SPPs - in particular its interaction with light - can be manipulated, offering potential for the development of new types of photonic devices. Thus, nanostructures capable of transferring, guiding, splitting, or even tuning the light have now become reality. In this work, the phenomenon of generation of SPPs is theoretically investigated and applied to various structures of scientific and technological interest, such as filters and cavity resonators. The main objective is to obtain structures that are able to filter or tune wavelengths, minimizing losses as much as possible. As a result, we expect to extend and explore even further the range of possible applications.
153

Stacked Dual Narrowband Organic Near-Infrared Photodetectors

Wang, Yazhong January 2017 (has links)
Compared with the detector devices made of inorganic semiconductors, organic photodetectors are granted with additional strengths, such as flexibility, high scalability and bio-compatibility. However, in the family of organic optoelectronic devices, the detectors that are capable of detecting photons at two or multiple specific wavelengths are still missing. Such photodetectors are highly interesting because they could identify the target objects or materials much more precisely by detecting the reflected, transmitted or emitted photons at two or multiple characteristic wavelengths. In this thesis project, the optical simulations using Transfer Matrix Method (TMM) were performed on the organic devices to achieve the dual wavelength narrowband detection in the near-infrared (NIR) spectral range of 700 ~ 1100 nm. The devices use the fact that, at the interface of the blended organic electron donating and accepting materials, the charge-transfer (CT) states with the transition energies that are lower than the optical gap of the neat materials are formed. Combined with a Fabry-Perot resonant cavity, the CT absorption can be dramatically enhanced at certain wavelengths. The simulation results show that the two detection wavelengths can be tuned independently from 650 to 1100 nm. The spectral resolution (full with at half maximum - FWHM) of the detection bands varies between 10 and 30 nm. The simulated external quantum efficiency (EQE) is ~35% at 700 nm and ~10% at 1000 nm, respectively. A possible application of such photodetectors is for example moisture detection, where two of the characteristic absorption peaks of water are located at around 750 and 960 nm. By optimizing the thickness of the two photo-absorbing layers in a tandem device structure, the detection bands can be tuned to match with those two wavelengths for simultaneous and precise detection.
154

Dvojčinný kvazirezonanční DC/DC měnič s transformátorem / Push-pull quasi-resonant DC/DC converter with a transformer

Dvořák, Petr January 2020 (has links)
This diploma thesis deals with analysis of function and subsequent construction of a quasi-resonant DC / DC converter 300 V / 50 V for an output of about 1.5 kW. The aim of this work is to test and describe the behavior of an experimental converter at various operating parameters. In the theoretical part, resonant circuits are described, as well as our connection of the resonant converter. Based on the used topology and the simulated behavior of the converter, the individual components of the power circuit and its control and excitation circuit are designed in Chapters 4 and 5. The sixth chapter deals with the construction and testing of the converter, including a description of its behavior. The last chapter contains technical documentation.
155

Omezení spínacích ztrát ve spínaných zdrojích / Switching loss reduction in the switch-mode supplies

Vašíček, Adam January 2012 (has links)
The master's thesis covers in its first parts origins and consequnces of the switching losses, basic principles of the various resonant tanks and resonant DC/DC converters. Afterwards the innovative approach of the multiperiod modulation is presented. The main advantages of this kind of modulation include very wide zero current switching region and lowering the switching frequency as the output voltage decreases. In the remaining part of the thesis a prototype converter design is described.
156

Implementation of second-order correlation spectroscopy (SOCOS) via all- Gaussian coherent Stokes and anti-Stokes Raman scattering

Nagpal, Supriya 30 April 2021 (has links)
Powerful spectroscopic techniques increasingly involve nonlinear processes that arise due to the convolution of more than one electric field - input laser pulse. Analyzing the output of optical processes like these demands the utilization of deterministic improvement tools. Three-color coherent Raman scattering represents a complex non-degenerate four wave mixing process that includes contributions from both resonant and non-resonant interaction of the three input fields to generate a signal. In order to quantify these contributions, effective differentiation of the non- resonant (background) from the resonant (coherent signal) is required. These contributions can be differentiated based on how the molecular vibrational modes are being excited by the input pulses. The work described here demonstrates the ability of second-order correlation spectroscopy, applied along with an all-Gaussian theoretical model to analyze three color coherent Raman scattering processes. It is shown to discriminate between resonant versus non-resonant four wave mixing processes successfully. A robust, femtosecond/picosecond coherent Raman spectroscope is used to observe how the resonant signal builds up in a finite amount of time for different specimens and how it is can be controlled by input laser pulse shaping. A closed-form solution obtained via an all-Gaussian approach provides confirmatory theoretical proof of the experimental results obtained. This technique is used to study hydrogen bonding, which is a vital molecular interaction for bio-molecular systems and yet lacks a profound understanding of its ways of forming complexes. Furthermore, a novel second-order one-dimensional correlation function is introduced that replicates the results of the diagonal sum of the traditional synchronous two- dimensional correlation function, thus reducing a two-dimensional analysis to one-dimension. Along with the first demonstration of these analyses for coherent Raman scattering, a generalized approach is described, which opens up research opportunities to investigate these optical processes' dependence on multiple controlling parameters.
157

A Resonant Capacitive Test Structure for Biomolecule Sensing

Bane, Danielle Nichole 27 August 2015 (has links)
No description available.
158

High-Efficiency and High-Frequency Resonant Converter Based Single-Stage Soft-Switching Isolated Inverter Design and Optimization with Gallium-Nitride (GaN)

Wen, Hao 30 September 2021 (has links)
Isolated inverter can provide galvanic isolation which is necessary for some applications with safety regulations. Traditionally, a two-stage configuration is widely applied with isolated dc-dc stage and a sinusoidal pulse-width-modulated (SPWM) dc-ac stage. However, this two-stage configuration suffers from more components count, more complex control and tend to have lower efficiency and lower power density. Meanwhile, a large dc bus capacitor is needed to attenuate the double line frequency from SPWM for two-stage configuration. Therefore, the single-stage approach including an isolated dc-rectified sine stage and a line frequency unfolder is preferable. Since the unfolder circuit is at line frequency being almost lossless, the isolated dc-rectified sine stage becomes critical. However, the relevant research for the single-stage isolated inverter is limited. People either utilize PWM based converter as dc-rectified sine stage with duty cycle adjustment or apply SRC or LLC resonant converter for better soft switching characteristics. For PWM based converter, hard switching restricts the overall inverter efficiency, while for SRC/LLC, enough wide voltage gain range and full range ZVS are the major issues. This dissertation aims to provide solutions for a high-efficiency, high-frequency resonant converter based single-stage soft-switching isolated inverter design. The LLC and LCLCL resonant converters are applied as the isolated dc-rectified sine stage with variable frequency modulation (VFM). Therefore, the rectified sine wave generation consists of many dc-dc conversion with different switching frequencies and an efficient dc-rectified sine stage design needs each dc-dc conversion to be with high efficiency. This dissertation will first propose the optimization methods for LLC converter dc-dc conversion. ZVS models are derived to ensure fully ZVS performance for primary side GaN devices. As a large part in loss breakdown, the optimization for transformer is essential. The LLC converter can achieve above 99% efficiency with proposed optimization approach. Moreover, the channel turn-off energy model is presented for a more accurate loss analysis. With all the design and optimization considerations, a MHz LLC converter based isolated inverter is designed and a hybrid modulation method is proposed, which includes full bridge (FB) VFM for output high line region and half bridge (HB) VFM for output low line region. By changing from FB to HB, the output voltage gain is reduced to half to have a wider voltage gain range. However, the total harmonic distortion (THD) of output voltage at light load will be impacted since the voltage gain will be higher with lighter load at the maximum switching frequency. A MHz LCLCL converter based isolated inverter is proposed for a better output voltage THD at light load conditions. The paralleled LC inside the LCLCL resonant tank can naturally create a zero voltage gain point at their resonant frequency, which shows superior performance for rectified sine wave generation. Besides the better THD performance, the LCLCL converter based isolated inverter also features for easier control, better ZVS performance and narrower switching frequency range. Meanwhile, the LCLCL based inverter topology has bi-directional power flow capability as well. With variable frequency modulation for ac-dc, this topology is still a single-stage solution compared to the traditional two-stage solution including PFC + LLC configuration. / Doctor of Philosophy / Inverters can convert dc voltage to ac voltage and typically people use two-stage approach with isolated dc-dc stage and dc-ac stage. However, this two-stage configuration suffers from more components count, more complex control and tend to have lower efficiency and lower power density. Therefore, the single-stage solution with dc-rectified sine wave stage and a line frequency unfolder becomes appealing. The unfolder circuit is to unfold the rectifier sine wave to an ac sine wave at the output. Since the unfolder is at line frequency and can be considered lossless, the key design is for the dc-rectified sine stage. The resonant converter featured for soft switching seems to be a good candidate. However, the inverter needs soft switching for the whole range and an enough wide voltage gain, which makes the design difficult, especially the target is high efficiency for the overall inverter. This dissertation aims to provide solutions for a high-efficiency, high-frequency resonant converter based single-stage soft-switching isolated inverter design. The LLC and LCLCL resonant converters are applied as the isolated dc-rectified sine stage with variable frequency modulation (VFM). Therefore, the rectified sine wave generation consists of many dc-dc conversion with different switching frequencies and an efficient dc-rectified sine stage design needs each dc-dc conversion to be with high efficiency. The design considerations and optimization methods for the LLC dc-dc conversion are firstly investigated. Based on these approaches, a MHz LLC converter based isolated inverter is designed with proposed hybrid modulation method. To further improve the light load performance, a MHz LCLCL converter based isolated inverter topology is proposed. The paralleled LC inside the LCLCL resonant tank can naturally create a zero voltage gain point which shows superior characteristics for rectified sine wave generation. Moreover, the LCLCL resonant converter based topology has bi-directional capability as well so it can work well for ac voltage to dc voltage conversion.
159

Simulation and characterisation of a concentrated solar power plant / Coenraad Josephus Nel

Nel, Coenraad Josephus January 2015 (has links)
Concentrated solar power (CSP) is an efficient means of renewable energy that makes use of solar radiation to produce electricity instead of making use of conventional fossil fuel techniques such as burning coal. The aim of this study is the simulation and characterisation of a CSP plant in order to gain a better understanding of the dominant plant dynamics. Due to the nature of the study, the dissertation is divided into two main parts namely the simulation of a CSP plant model and the characterisation of the plant model. Modelling the CSP plant takes the form of developing an accurate Flownex® model of a 40 MW combined cycle CSP plant. The model includes thermal energy storage as well as making use of a duct burner. The Flownex® model is based on an existing TRNSYS model of the same plant. The Flownex® model is verified and validated, by making use of a bottom-up approach, to ensure that the developed model is in fact correct. The characterisation part of this dissertation involves evaluating the dynamic responses unique to that of a CSP plant as stated in the literature. This involves evaluating the dominant dynamic behaviour, the presence of resonant and anti-resonant modes found within the control bandwidth, and the change in the dynamics of the plant as the plants’ operating points change throughout the day. Once the developed model is validated, characterisation in the form of evaluating the open loop local linear models of the plant is implemented. In order to do so, these models are developed based on model identification processes, which include the use of system identification software such as Matlab® SID Toolbox®. The dominant dynamic behaviour of the plant model, obtained from the developed local linear models, represents that of an over damped second order system that changes as the operating points of the plant change; with the models’ time responses and the bandwidth decreasing and increasing respectively as the thermal energy inputs to the plant increases. The frequency response of the developed local linear models also illustrates the presence of resonant and antiresonant modes found within the control bandwidth of the solar collector field’s temperature response. These modes however are not found to be present in the mechanical power output response of the plant. The use of adaptive control, such as feedforward and gain-scheduled controllers, for the plant should be developed to compensate for the dynamic behaviours associated with that of a CSP plant. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
160

Simulation and characterisation of a concentrated solar power plant / Coenraad Josephus Nel

Nel, Coenraad Josephus January 2015 (has links)
Concentrated solar power (CSP) is an efficient means of renewable energy that makes use of solar radiation to produce electricity instead of making use of conventional fossil fuel techniques such as burning coal. The aim of this study is the simulation and characterisation of a CSP plant in order to gain a better understanding of the dominant plant dynamics. Due to the nature of the study, the dissertation is divided into two main parts namely the simulation of a CSP plant model and the characterisation of the plant model. Modelling the CSP plant takes the form of developing an accurate Flownex® model of a 40 MW combined cycle CSP plant. The model includes thermal energy storage as well as making use of a duct burner. The Flownex® model is based on an existing TRNSYS model of the same plant. The Flownex® model is verified and validated, by making use of a bottom-up approach, to ensure that the developed model is in fact correct. The characterisation part of this dissertation involves evaluating the dynamic responses unique to that of a CSP plant as stated in the literature. This involves evaluating the dominant dynamic behaviour, the presence of resonant and anti-resonant modes found within the control bandwidth, and the change in the dynamics of the plant as the plants’ operating points change throughout the day. Once the developed model is validated, characterisation in the form of evaluating the open loop local linear models of the plant is implemented. In order to do so, these models are developed based on model identification processes, which include the use of system identification software such as Matlab® SID Toolbox®. The dominant dynamic behaviour of the plant model, obtained from the developed local linear models, represents that of an over damped second order system that changes as the operating points of the plant change; with the models’ time responses and the bandwidth decreasing and increasing respectively as the thermal energy inputs to the plant increases. The frequency response of the developed local linear models also illustrates the presence of resonant and antiresonant modes found within the control bandwidth of the solar collector field’s temperature response. These modes however are not found to be present in the mechanical power output response of the plant. The use of adaptive control, such as feedforward and gain-scheduled controllers, for the plant should be developed to compensate for the dynamic behaviours associated with that of a CSP plant. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015

Page generated in 0.2693 seconds