Spelling suggestions: "subject:"nonresonant structure"" "subject:"nonressonant structure""
1 |
Transmit field pattern control for high field magnetic resonance imaging with integrated RF current sourcesKurpad, Krishna Nagaraj 01 November 2005 (has links)
The primary design criterion for RF transmit coils for MRI is uniform transverse magnetic (B1) field. Currently, most high frequency transmit coils are designed as periodic, symmetric structures that are resonant at the imaging frequency, as determined by the static magnetic (B0) field strength. These coils are excited by one or more voltage sources. The distribution of currents on the coil elements or rungs is determined by the symmetry of the coil structure. At field strengths of 3T and above, electric properties such as the dielectric constant and conductivity of the load lead to B1 field inhomogeneity due to wavelength effects and perturbation of the coil current distribution from the ideal. The B1 field homogeneity under such conditions may be optimized by adjusting the amplitudes and phases of the currents on the rungs. However, such adjustments require independent control of current amplitudes and phases on each rung of the resonant coil. Due to both the strong coupling among the rungs of a resonant coil and the sensitivity to loading, such independent control would not be possible and B1 homogeneity optimization would involve a time consuming and impractical iterative procedure in the absence of exact knowledge of interactions among coil elements and between the coil and load.
This dissertation is based on the work done towards the design and development of a RF current source that drives high amplitude RF current through an integrated array element. The arrangement is referred to as a current element. Independent control of current amplitude and phase on the current elements is demonstrated. A non-resonant coil structure consisting of current elements is implemented and B1 field pattern control is demonstrated. It is therefore demonstrated that this technology would enable effective B1 field optimization in the presence of lossy dielectric loads at high field strengths.
|
2 |
Controlling flexural waves using subwavelength perfect absorbers : application to Acoustic Black Holes / Contrôle des ondes de flexion au moyen d’absorbeurs parfaits sub-longueur d’onde : application au trou noir acoustiqueLeng, Julien 05 November 2019 (has links)
Le contrôle des vibrations à basse fréquence adapté aux structures légères est un défi scientifique ettechnologique en raison de contraintes économiques et écologiques de plus en plus strictes. De récentes études enacoustique ont portées sur l’absorption totale d’ondes basses fréquences à l’aide d’absorbeurs parfaits sublongueursd’onde. Ces métamatériaux sont obtenus en exploitant la condition de couplage critique. Unegénéralisation de cette méthode pour le domaine élastodynamique serait d’un grand intérêt pour répondre auxexigences du contrôle des vibrations de structures légères à basse fréquence.Cette thèse vise à adapter le problème d’absorption parfaite des ondes de flexion dans des systèmes 1D et 2D avecdes résonateurs locaux en utilisant la condition de couplage critique. Une étude préliminaire sur des systèmes 1D àgéométries simples sont d’abord proposée. Celle-ci propose une méthode de conception de résonateurs simplespour une absorption efficace des ondes de flexion. Une complexification du système 1D est ensuite considérée avecl’étude du couplage critique de Trou Noir Acoustique (TNA) 1D. Ceci a motivé l’interprétation de l’effet TNA à l’aidedu concept de couplage critique afin de présenter des outils clés à de futures procédures d’optimisation pour ce typede terminaisons. La condition de couplage critique est ensuite étendue aux systèmes 2D. L’absorption parfaite parle premier mode axisymétrique d’un résonateur circulaire inséré dans une plaque mince infinie est analysée. Ladiffusion multiple par une ligne de résonateurs circulaires insérés dans une plaque mince 2D infinie ou semi-infinie,appelée métaplaque, est aussi considérée dans l’optique de se rapprocher d’une application industrielle. A traverscette thèse, des modèles analytiques, des simulations numériques et des expériences sont présentés pour valider lecomportement physique des systèmes présentés. / The vibration control adapted to light structures is a scientific and technological challenge due toincreasingly stringent economic and ecological standards. Meanwhile, recent studies in audible acoustics havefocused on broadband wave absorption at low frequencies by means of subwavelength perfect absorbers. Suchmetamaterials can totally absorb the energy of an incident wave. The generalisation of this method for applicationsin elastodynamics could be of great interest for the vibration control of light structures.This thesis aims at adapting the perfect absorption problem for flexural waves in 1D and 2D systems with localresonators using the critical coupling condition. A study of 1D systems with simple geometries is first proposed. Thisprovides methods to design simple resonators for an effective absorption of flexural waves. The 1D systems thenbecome more complex by studying the critical coupling of 1D Acoustic Black Holes (ABH). The ABH effect is theninterpreted using the concept of critical coupling, and key features for future optimisation procedures of ABHs arepresented. The critical coupling condition is then extended to 2D systems. The perfect absorption by the firstaxisymmetric mode of a circular resonator inserted in a thin plate is analysed. Multiple scattering by an array ofcircular resonators inserted in an infinite or semi-infinite 2D thin plate, called metaplate, is also considered to getclose to practical applications. Through this thesis, analytical models, numerical simulations and experiments areshown to validate the physical behaviour of the systems presented.
|
3 |
Numerické modelování periodických struktur / Numerical Modeling of Periodical StructuresNešpor, Dušan January 2014 (has links)
The thesis discusses the dynamic electromagnetic field on periodic structures. The author focuses on three principal types of resonant structures, considering their application possibilities. In general, these types can be individually defined as follows: materials exhibiting a negative refractive index of the incident electromagnetic wave; structures with gradual changes in impedance, characterised by their usability as reflectionless surfaces; and periodic structures able to conveniently shape the magnetic field distribution. Materials of the third group within the above-shown short list facilitate the fabrication of magnetoinductive lenses for nuclear magnetic resonance. The presented analysis of the properties of periodic resonant structures is mainly based on numerical models utilising the finite element method, and this approach is combined with both the derivation of the corresponding analytical relations and an experimental measurement of the non-radiating component of the electromagnetic field. The thesis includes a physical description of the basic elements of periodic resonant structures. Physical properties of the elements were examined in detail via numerical analysis. In the course of the research, the data acquired through this analysis and the related experimental measurement enabled the author to propose a method for optimising the most widely used resonant structures. Moreover, several new versions of resonant elements, structures, and fabrication techniques were also designed. The results obtained from the numerical analyses carried out to examine the central physical properties of the fabricated structure samples were all verified via the designed method for measuring the non-radiating component of the magnetic field.
|
Page generated in 0.0842 seconds