Spelling suggestions: "subject:"nonspecificity"" "subject:"conspecificity""
221 |
Investigating the substrate specificity of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P) synthaseTran, David January 2011 (has links)
The shikimate pathway is a biosynthetic pathway that is responsible for producing a variety of organic compounds that are necessary for life in plants and microorganisms. The pathway consists of seven enzyme catalysed reactions beginning with the condensation reaction between D-erythrose 4-phosphate (E4P) and phosphoenolpyruvate (PEP) to give the seven-carbon sugar DAH7P. This thesis describes the design, synthesis and evaluation of a range of alternative non-natural four-carbon analogues of E4P (2- and 3-deoxyE4P, 3-methylE4P, phosphonate analogues of E4P) to probe the substrate specificity of different types of DAH7P synthases [such as Mycobacterium tuberculosis (a type II DAH7PS), Escherichia coli (a type Ialpha DAH7PS) and Pyrococcus furiosus (a type Ibeta DAH7PS)].
|
222 |
Haematopoietic Serine Proteases : A Cleavage Specificity AnalysisThorpe, Michael January 2014 (has links)
Mast cells are innate immune cells, historically involved in allergy responses involving IgE. Through this, they have earned a reputation as a fairly detrimental cell type. Their beneficial roles remain somewhat enigmatic although they clearly have the ability to modulate the immune system. This is due to their ability to synthesise many cytokines and chemokines as well as immediately release potent granule-stored mediators. One such mediator is a serine protease, chymase, which has been targeted by pharmaceutical companies developing inhibitors for use in inflammatory conditions. In order to address roles of the proteases, information regarding their cleavage specificity using substrate phage display can help find potential in vivo substrates. The human chymase cleaves substrates with aromatic amino acids in the P1 position and has a preference for negatively charged amino acids in the P2’ position. The molecular interactions mediating this P2’ preference was investigated by site-directed mutagenesis, where Arg143 and Lys192 had a clear effect in this selectivity. As humans express one chymase and rodents express multiple chymases, extrapolating data between species is difficult. Here, the crab-eating macaque was characterised, which showed many similarities to the human chymase including a near identical extended cleavage specificity and effects of human chymase inhibitors. Appropriate models are needed when developing human inhibitors for therapeutic use in inflammatory conditions. The effects of five specific chymase inhibitors in development were also tested. The selectivity of inhibitors was dependent on both Arg143 and Lys192, with a greater effect of Lys192. Identification of residues involved in specific inhibitor interactions is important for selective inhibitor development. Another innate cell type, the NK cell, is important in virus and tumour defence. In the channel catfish, a serine protease from an NK-like cell, granzyme-like I, was characterised. A strict preference for Met in the P1 position was seen, and caspase 6 was identified as a potential in vivo target. This may highlight a novel apoptosis-inducing mechanism from a similar cell type has been conserved for approximately 400 myr. Here, important residues mediating chymases’ specificity and interactions with inhibitors has been addressed, as well as finding a new animal model for providing ways to combat their roles in pathological settings.
|
223 |
Bivariate meta-analysis of sensitivity and specificity of radiographers' plain radiograph reporting in clinical practiceBrealey, S., Hewitt, C., Scally, Andy J., Hahn, S., Godfrey, C., Thomas, N. January 2009 (has links)
Studies of diagnostic accuracy often report paired tests for sensitivity and specificity that can be pooled separately to produce summary estimates in a meta-analysis. This was done recently for a systematic review of radiographers' reporting accuracy of plain radiographs. The problem with pooling sensitivities and specificities separately is that it does not acknowledge any possible (negative) correlation between these two measures. A possible cause of this negative correlation is that different thresholds are used in studies to define abnormal and normal radiographs because of implicit variations in thresholds that occur when radiographers' report plain radiographs. A method that allows for the correlation that can exist between pairs of sensitivity and specificity within a study using a random effects approach is the bivariate model. When estimates of accuracy as a fixed-effects model were pooled separately, radiographers' reported plain radiographs in clinical practice at 93% (95% confidence interval (CI) 92-93%) sensitivity and 98% (95% CI 98-98%) specificity. The bivariate model produced the same summary estimates of sensitivity and specificity but with wider confidence intervals (93% (95% CI 91-95%) and 98% (95% CI 96-98%), respectively) that take into account the heterogeneity beyond chance between studies. This method also allowed us to calculate a 95% confidence ellipse around the mean values of sensitivity and specificity and a 95% prediction ellipse for individual values of sensitivity and specificity. The bivariate model is an improvement on pooling sensitivity and specificity separately when there is a threshold effect, and it is the preferred method of choice.
|
224 |
DNA-Assisted Immunoassays for High-Performance Protein AnalysesYan, Junhong January 2014 (has links)
Proteins play important roles in most cellular functions, such as, replication, transcription regulation, signal transduction, for catalyzing chemical reaction, etc. Technologies developed to identify proteins rely either on observing their own properties such as charge, size, mass to charge ratio or sequence composition; or on using affinity reagents that recognize specific protein targets. Immunoassays utilizing functionalized affinity reagents are powerful for targeted proteomics. Among them, DNA-assisted immunoassays in which affinity reagents are labeled with DNA molecules, offer some unique advantages. In this thesis, I will present works to improve current DNA-assisted immunoassays such as proximity ligation assays (PLA), as well as to take advantage of DNA reactions to adress other problems. In paper I, a new solid support (MBC-Ts) was functionalized with antibodies and used in the solid-phase PLA for detection of VEGF. The assay using MBC-Ts was compared among the commercially available solid supports in different matrices and it was shown to exhibit enhanced limit of detection in complex matrices. In paper II, a two-step protocol was described to prepare high-quality probes used in homogeneous and in situ PLA by purifying DNA-labeled affinity reagents from unconjugated affinity reagents and excess oligonucleotides. In paper III, PLA was applied on a capillary western blotting instrument so that both the sensitivity and specificity of the original assay were improved. In paper IV, a new method was introduced to profile protein components in individual protein complexes by DNA-barcoded antibodies. This method has been used to profile protein complexes such as surface proteins on individual secreted vesicles.
|
225 |
Characterization of antibody specificity using peptide array technologiesForsström, Björn January 2014 (has links)
Antibodies play an important role in the natural immune response to invading pathogens. The strong and specific binding to their antigens also make them indispensable tools for research, diagnostics and therapy. This thesis describes the development of methods for characterization of an- tibody specificity and the use of these methods to investigate the polyclonal antibody response after immunization. Paper I describes the development of an epitope-specific serum fractionation technique based on epitope map- ping using overlapping peptides followed by chromatographic separation of polyclonal serum. This technique together with another epitope mapping technique based on bacterial display of protein fragments were then used to generate antibody sandwich pairs (Paper I), investigate epitope variations of repeated immunizations (Paper II) and to determine the ratio of antibodies targeting linear and conformational epitopes of polyclonal antibodies (Paper III). Paper IV describes the optimization of in situ-synthesized high-density peptide arrays for epitope mapping and how different peptide lengths influ- ence epitope detection and resolution. In Paper V we show the development of planar peptide arrays covering the entire human proteome and how these arrays can be used for epitope mapping and off-target binding analysis. In Paper VI we show how polyclonal antibodies targeting linear epitopes can be used for peptide enrichment in a rapid, absolute protein quantification protocol based on mass spectrometry. Altogether these investigations demonstrate the usefulness of peptide arrays for fast and straightforward characterization of antibody specificity. The work also contributes to a deeper understanding of the polyclonal anti- body response obtained after immunization with recombinant protein frag- ments. / <p>QC 20141111</p>
|
226 |
Activity-based Functional Annotation of Unknown Proteins: HAD-like hydrolases from E. coli and S. cerevisiaeKuznetsova, Ekaterina 18 February 2010 (has links)
In all sequenced genomes, a large fraction of predicted genes encodes proteins of unknown biochemical function and up to 15% of the genes with ‘‘known’’ function are mis-annotated. Several global approaches are being employed to predict function, including sequence similarity searches, analysis of gene expression, protein interaction, and protein structure. Enzymes comprise a group of target proteins that require experimental characterization for accurate functional annotations. Here I applied enzyme genomics to identify new enzymes by screening individually purified proteins for enzymatic activity under relaxed reaction conditions, which allowed me to identify the subclass or sub-subclasses of enzymes to which the unknown protein belongs. Further biochemical characterization of proteins was facilitated by the application of secondary screens with natural substrates (substrate profiling). Application of general enzymatic screens and substrate profiling greatly sped up the identification of biochemical function of unknown proteins and the experimental verification of functional predictions produced by other functional genomics approaches.
As a test case, I used this approach to characterize the members of the haloacid dehalogenase (HAD)-like hydrolase superfamily, which consists mainly of uncharacterized enzymes, with a few members shown to possess phosphatase, beta-phosphoglucomutase, phosphonatase, and dehalogenase activities. Low sequence similarity between the members of the HAD superfamily precludes the computational prediction of their substrates and functions. Using a representative set of 80 phosphorylated substrates I characterized the phosphatase activities of 21 soluble HADs from Escherichia coli and seven soluble HADs from Saccharomyces cerevisiae. E. coli HADs show broad and overlapping substrate specificity against a wide range of phosphorylated metabolites. The yeast enzymes were more specific, and one protein also showed protein phosphatase activity. Comparison of HAD substrate profiles from two model organisms showed several “functional niches” that are occupied by HADs, which include hydrolysis of nucleotides, phosphoglycolate, phosphoserine, and pyridoxal phosphate. I proposed the cellular function for a number of HADs from both organisms based on substrate specificities. The physiological relevance of the phosphatase activity with the preferred substrate was validated in vivo for one of the HADs, E. coli YniC.
|
227 |
Engineering carbonic anhydrase for highly selective ester hydrolysisHöst, Gunnar January 2007 (has links)
I denna avhandling presenteras arbete utfört med enzymet humant karboanhydras II (HCAII). Enzymer är en typ av proteiner som accelererar (katalyserar) kemiska reaktioner, vilket är nödvändigt för allt levande. Den naturliga funktionen för HCAII är att katalysera omvandlingen av gasen koldioxid till vätekarbonat, som är löslig i vätska. Detta är viktigt bl.a. för att koldioxid som bildas i kroppen, och fraktas i blodet i form av vätekarbonat, skall hinna över till utandningsluften under den korta tid blodet är i lungorna. Proteiner består av aminosyror som länkats samman i en lång kedja, där varje aminosyra är en av de 20 naturliga aminosyratyperna. Ett proteins struktur och egenskaper bestäms av aminosyrasekvensen, som i sin tur bestäms av genen för just det proteinet. Med genteknik kan ett proteins gen ändras (muteras), så att aminosyrasekvensen ändras, och det har här utnyttjats för att förändra HCAIIs katalytiska egenskaper. Förutom dess naturliga funktion kan HCAII även klyva (hydrolysera) vissa estrar. Mutationer gjordes så att en ’ficka’ i HCAIIs struktur, där molekylerna (substraten) som skall klyvas binder, fick en större volym. På så sätt skapades varianter med en kraftigt ökad kapacitet för att hydrolysera långa estersubstrat jämfört med icke-muterat HCAII. Som en utveckling av detta projekt skapades en mutant av HCAII, som kan hydrolysera ett än mer skrymmande substrat. I ett annat projekt har en ny katalytisk aktivitet skapats i HCAII, som inte utnyttjar enzymets naturliga katalytiska förmåga. Ett nytt estersubstrat konstruerades, med en del som binder kraftigt till HCAII, så att en stark substratbindning erhölls. Sedan muterades vissa aminosyror till en reaktiv aminosyra som heter histidin. Valet av positioner för mutation baserades på en datormodell av enzymet med bundet substrat. Eftersom histidin kan delta i hydrolysreaktioner, får det muterade enzymet möjlighet att klyva substratet. Flera olika mutanter testades, och den effektivaste innehöll ett nära kopplat par av histidiner. Denna mutant undersöktes mer noggrannt, vilket gav viss information om den katalytiska mekanismen. Det långsiktiga målet med detta arbete är att konstruera muterade enzymer som kan klyva giftiga ämnen, eller användas vid framställning av kemikalier. Det finns behov av nya enzymer för olika typer av substrat, och att med rationella metoder skapa nya katalytiska aktiviteter i proteiner är ett svårt vetenskapligt problem som ännu är i ett tidigt utvecklingsskede. / The main part of this thesis describes results from protein engineering experiments, in which the catalytic activity of the enzyme human carbonic anhydrase II (HCAII) is engineered by mutagenesis. This enzyme, which catalyzes the interconversion between CO2 and HCO3- in the body, also has the ability to hydrolyze ester bonds. In one project, the specificity of HCAII towards a panel of para-nitrophenyl ester substrates, with acyl chain lengths ranging from one to five carbon atoms, was changed by enlarging the substrate binding hydrophobic pocket. A variant was identified that has highly increased specificity towards substrates with long acyl chains. The mutant V121A/V143A hydrolyzes pNPV, which has four carbon atoms in the acyl chain, with an efficiency that is increased by a factor of 3000 compared to HCAII. Further, transition state analogues (TSAs) were docked to HCAII and mutant variants, and the results were correlated to the results from kinetic measurements. This indicated that automated docking could be used to some extent to construct HCAII variants with a designed specificity. Using this approach, a HCAII mutant that can hydrolyze a model benzoate ester was created. Interestingly, the resulting variant V121A/V143A/T200A was found to be highly active with other ester substrates as well. For pNPA, a kcat/KM of 1*105 M-1s-1 was achieved, which is the highest efficiency for hydrolysis of carboxylic acid esters reported for any HCAII variant. In another project, the strong affinity between the active site zinc ion and sulfonamide was used to achieve binding of a designed substrate. Thus, the natural Zn-OH- site of HCAII was not used for catalysis, but for substrate binding. The substrate contains a benzenesulfonamide part in one end, with a para-nitrophenyl ester connected via a linker. The linker was chosen to ensure that the scissile bond is positioned close to His-64 and histidine residues introduced by mutagenesis in other positions. Using this approach, an enzyme was designed with a distinctly new two-histidine catalytic site for ester hydrolysis. The mutant, F131H/V135H, has a kcat/KM of approximately 14000 M-1s-1, which corresponds to a rate enhancement of 107 compared to a histidine mimic. Finally, results are reported on a project aimed at cloning and producing a putative carbonic anhydrase from the malaria parasite Plasmodium falciparum. The gene was cloned by PCR and the construct was overexpressed in E. coli. However, the resulting protein was not soluble, and initial attempts to refold it are also reported.
|
228 |
Statistical Geocomputing: Spatial Outlier Detection in Precision AgricultureChu Su, Peter 29 September 2011 (has links)
The collection of crop yield data has become much easier with the introduction of technologies such as the Global Positioning System (GPS), ground-based yield sensors, and Geographic Information Systems (GIS). This explosive growth and widespread use of spatial data has challenged the ability to derive useful spatial knowledge. In addition, outlier detection as one important pre-processing step remains a challenge because the technique and the definition of spatial neighbourhood remain non-trivial, and the quantitative assessments of false positives, false negatives, and the concept of region outlier remain unexplored. The overall aim of this study is to evaluate different spatial outlier detection techniques in terms of their accuracy and computational efficiency, and examine the performance of these outlier removal techniques in a site-specific management context.
In a simulation study, unconditional sequential Gaussian simulation is performed to generate crop yield as the response variable along with two explanatory variables. Point and region spatial outliers are added to the simulated datasets by randomly selecting observations and adding or subtracting a Gaussian error term. With simulated data which contains known spatial outliers in advance, the assessment of spatial outlier techniques can be conducted as a binary classification exercise, treating each spatial outlier detection technique as a classifier. Algorithm performance is evaluated with the area and partial area under the ROC curve up to different true positive and false positive rates. Outlier effects in on-farm research are assessed in terms of the influence of each spatial outlier technique on coefficient estimates from a spatial regression model that accounts for autocorrelation.
Results indicate that for point outliers, spatial outlier techniques that account for spatial autocorrelation tend to be better than standard spatial outlier techniques in terms of higher sensitivity, lower false positive detection rate, and consistency in performance. They are also more resistant to changes in the neighbourhood definition. In terms of region outliers, standard techniques tend to be better than spatial autocorrelation techniques in all performance aspects because they are less affected by masking and swamping effects. In particular, one spatial autocorrelation technique, Averaged Difference, is superior to all other techniques in terms of both point and region outlier scenario because of its ability to incorporate spatial autocorrelation while at the same time, revealing the variation between nearest neighbours.
In terms of decision-making, all algorithms led to slightly different coefficient estimates, and therefore, may result in distinct decisions for site-specific management.
The results outlined here will allow an improved removal of crop yield data points that are potentially problematic. What has been determined here is the recommendation of using Averaged Difference algorithm for cleaning spatial outliers in yield dataset. Identifying the optimal nearest neighbour parameter for the neighbourhood aggregation function is still non-trivial. The recommendation is to specify a large number of nearest neighbours, large enough to capture the region size. Lastly, the unbiased coefficient estimates obtained with Average Difference suggest it is the better method for pre-processing spatial outliers in crop yield data, which underlines its suitability for detecting spatial outlier in the context of on-farm research.
|
229 |
Biomimetic integrin-specific surface to direct osteoblastic function and tissue healingPetrie, Timothy Andrew 06 July 2009 (has links)
Current orthopedic implant technologies used suffer from slow rates of osseointegration, short lifetime, and lack of mechanical integrity as a result of poorly controlled cell-surface interactions. Recent biologically-inspired surface strategies (biomimetic) have focused on mimicking the biofunctionality of the extracellular matrix (ECM) by using short, adhesive oligopeptides, such as arginine-glycine-aspartic acid (RGD) present in numerous ECM components. However, these strategies have yielded mixed results in vivo and marginal bone healing responses. The central goal of this dissertation project was to engineer bioactive surfaces that specifically target integrin receptors important for osteogenic functions in order to improve bone tissue repair.
In order to create integrin-specific interfaces, integrin-specific ligands reconstituting the fibronectin (FN) secondary/tertiary structure were first engineered and functionalized on material surfaces using several robust presentation schemes. We demonstrated that FN-mimetic-functionalized surfaces that directed α5β1 binding enhanced osteoblast and stromal cell integrin binding and adhesion, osteogenic signaling, and osteoblastic differentiation compared to various other RGD-based ligand-functionalized surfaces. Next, we investigated the effect of integrin-specific biointerfaces to modulate bone healing in a rat tibia implant bone model. We demonstrated, using a robust polymer brush system, that bioactive coatings on titanium implants that conferred high α5β1 integrin specificity in vitro enhanced bone formation and implant integration in vivo. Moreover, we showed that integrin specificity can be engineered using different immobilization schemes, including clinically-relevant ligand dip-coating, and promote the same robust in vivo effect. Furthermore, we investigate the synergistic roles of integrin specificity and ligand clustering on cell response by engineering biointerfaces presenting trimeric and pentameric "heads" of FNIII7-10 with nanoscale spacing. Integrin-specific ligand clustering supported α5β1-specific binding and cell adhesion and enhanced implant osseointegration in vivo compared to monovalent FNIII7-10 or non-functionalized biointerfaces.
In summary, the FN-mimetic integrin-specific biointerfaces engineered in this thesis provide a clinically-relevant material surface strategy to modulate tissue healing responses. In addition, these results contribute to our greater understanding of how two specific material design parameters, integrin binding specificity and clustered ligand presentation, contribute individually and synergistically toward directing cell and tissue function.
|
230 |
Acute Abdominal PainLaurell, Helena January 2006 (has links)
The aim was to identify diagnostic difficulties for acute abdominal pain at the emergency department and during hospital stay. A total of 3349 patients admitted to Mora Hospital with acute abdominal pain of up to seven days duration, were registered prospectively for history and clinical signs according to a structured schedule. The preliminary diagnosis from the attending physician at the emergency department, any investigations or surgery and final diagnosis were registered at a follow-up after at least one year. There were no differences in diagnostic performance between physicians with 0.5 to 5 years of medical experience. The information collected and a careful examination of the patient was more important than formal competence. The main differential diagnostic problem was non-specific abdominal pain; this was the same for diagnoses requiring surgery. Patients originally diagnosed as not needing surgery had a median delay before operation of 22 hours (mean 40 hours, with 95% confidence interval of 30-50 hours), compared to 8 hours (mean 15 hours, 95% confidence interval of 12-28 hours) for patients with the same final follow-up diagnosis as the preliminary diagnosis. Constipation was a diagnostic pitfall, as 9% of the patients considered constipated required surgery for potentially life threatening reasons and 8% were later found to have an abdominal malignancy. Both the preliminary diagnosis and the discharge diagnosis were less reliable for elderly patients than for younger patients. Elderly patients often had specific organ disease and arrived at the emergency department after a longer history of abdominal pain. This study confirms that assessment of suspected appendicitis can still be based on clinical judgements combined with laboratory tests. Classical clinical findings indicating localised inflammation, such as isolated pain in the right iliac fossa, rebound tenderness, right-sided rectal tenderness, pain migration to the right iliac fossa, local guarding and aggravation of pain when moving, were reliable for predicting acute appendicitis. A CT scan can be saved for the more equivocal cases of acute abdominal pain. A generous strategy regarding CT scan among elderly patients with acute abdominal pain, even in the absence of pronounced signs of an inflammatory intra-abdominal process, is recommended.
|
Page generated in 0.0609 seconds