• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 231
  • 94
  • 40
  • 38
  • 19
  • 8
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 535
  • 97
  • 60
  • 51
  • 50
  • 49
  • 42
  • 40
  • 37
  • 37
  • 36
  • 36
  • 34
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Zwitterionic Sulfobetaine Polymers as Stationary Phases for Liquid Chromatography

Wikberg, Erika January 2008 (has links)
<p>Liquid chromatography is an important separation technique for a vast number of analytes. This thesis mainly focuses on the development of stationary phases for liquid chromatography based on zwitterionic sulfobetaine polymers.</p><p>In the thesis, various ways to prepare zwitterionic polymers in an aqueous environment using reversible addition fragmentation chain transfer (RAFT) polymerization are described. Both telomers, i.e. short soluble polymer chains containing a functional terminal group, as well as graft polymers on various supports have been synthesized. The RAFT polymerization technique provides an increased degree of control of the final polymers, which may aid in the preparation of more specifically tailored separation materials.</p><p>Sulfobetaine polymers carry both a positive and a negative charge within a single entity, which results in interesting solution properties as well as highly biocompatible features. These unique features make them especially suited for separation of highly polar and/or charged compounds. An example of the successful separation of short peptides using a stationary phase synthesized with the RAFT technique is given.</p><p>The unusual properties of sulfobetaine-type polymers are believed to be associated with the structure of water close to the polymer. A study of water structure in some silica based stationary phase grafted with zwitterionic sulfobetaine polymers was conducted. The impact of water structure on retention characteristics was investigated.</p>
112

Multipole moments of axisymmetric spacetimes

Bäckdahl, Thomas January 2006 (has links)
<p>In this thesis we study multipole moments of axisymmetric spacetimes. Using the recursive definition of the multipole moments of Geroch and Hansen we develop a method for computing all multipole moments of a stationary axisymmetric spacetime without the use of a recursion. This is a generalisation of a method developed by Herberthson for the static case.</p><p>Using Herberthson’s method we also develop a method for finding a static axisymmetric spacetime with arbitrary prescribed multipole moments, subject to a specified convergence criteria. This method has, in general, a step where one has to find an explicit expression for an implicitly defined function. However, if the number of multipole moments are finite we give an explicit expression in terms of power series.</p> / Note: The two articles are also available in the pdf-file. Report code: LiU-TEK-LIC-2006:4.
113

Airborne mapping using LIDAR / Luftburen kartering med LIDAR

Almqvist, Erik January 2010 (has links)
<p>Mapping is a central and common task in robotics research. Building an accurate map without human assistance provides several applications such as space missions, search and rescue, surveillance and can be used in dangerous areas. One application for robotic mapping is to measure changes in terrain volume. In Sweden there are over a hundred landfills that are regulated by laws that says that the growth of the landfill has to be measured at least once a year.</p><p>In this thesis, a preliminary study of methods for measuring terrain volume by the use of an Unmanned Aerial Vehicle (UAV) and a Light Detection And Ranging (LIDAR) sensor is done. Different techniques are tested, including data merging strategies and regression techniques by the use of Gaussian Processes. In the absence of real flight scenario data, an industrial robot has been used fordata acquisition. The result of the experiment was successful in measuring thevolume difference between scenarios in relation to the resolution of the LIDAR. However, for more accurate volume measurements and better evaluation of the algorithms, a better LIDAR is needed.</p> / <p>Kartering är ett centralt och vanligt förekommande problem inom robotik. Att bygga en korrekt karta av en robots omgivning utan mänsklig hjälp har en mängd tänkbara användningsområden. Exempel på sådana är rymduppdrag, räddningsoperationer,övervakning och användning i områden som är farliga för människor. En tillämpning för robotkartering är att mäta volymökning hos terräng över tiden. I Sverige finns det över hundra soptippar, och dessa soptippar är reglerade av lagar som säger att man måste mäta soptippens volymökning minst en gång om året.</p><p>I detta exjobb görs en undersökning av möjligheterna att göra dessa volymberäkningarmed hjälp av obemannade helikoptrar utrustade med en Light Detectionand Ranging (LIDAR) sensor. Olika tekniker har testats, både tekniker som slår ihop LIDAR data till en karta och regressionstekniker baserade på Gauss Processer. I avsaknad av data inspelad med riktig helikopter har ett experiment med en industri robot genomförts för att samla in data. Resultaten av volymmätningarnavar goda i förhållande till LIDAR-sensorns upplösning. För att få bättre volymmätningaroch bättre utvärderingar av de olika algoritmerna är en bättre LIDAR-sensor nödvändig.</p>
114

Multipole Moments of Stationary Spacetimes

Bäckdahl, Thomas January 2008 (has links)
In this thesis we study the relativistic multipole moments for stationary asymptotically flat spacetimes as introduced by Geroch and Hansen. These multipole moments give an asymptotic description of the gravitational field in a coordinate independent way. Due to this good description of the spacetimes, it is natural to try to construct a spacetime from only the set of multipole moments. Here we present a simple method to do this for the static axisymmetric case. We also give explicit solutions for the cases where the number of non-zero multipole moments are finite. In addition, for the general stationary axisymmetric case, we present methods to generate solutions. It has been a long standing conjecture that the multipole moments give a complete characterization of the stationary spacetimes. Much progress toward a proof has been made over the years. However, there is one remaining difficult task: to prove that a spacetime exists with an a-priori given arbitrary set of multipole moments subject to some given condition. Here we present such a condition for the axisymmetric case, and prove that it is both necessary and sufficient. We also extend this condition to the general case without axisymmetry, but in this case we only prove the necessity of our condition.
115

Cellulose synthases in Populus- identification, expression analyses and in vitro synthesis

Djerbi, Soraya January 2005 (has links)
Cellulose is a biopolymer of great relevance in the plant cell walls, where it constitutes the most important skeletal component. Cellulose is also an important raw material in the pulp- and paper, forest, and textile industries, among others. Cellulose biosynthesis in particular, and xylogenesis in general are processes which are currently poorly understood. Yet, research in cellulose synthesis is progressing and different applications of cellulose, mainly cellulose derivatives for e.g. pharmaceuticals and coatings, are constantly emerging. This thesis depicts how cellulose synthase (CesA) genes in Populus were identified and characterized by gene expression- and bioinformatics analyses. Within an EST database of more than 100,000 clones from wood forming tissues of three different Populus taxa, ten CesA genes were identified in Populus tremula x tremuloides. Subsequent gene expression analyses by using microarrays and real-time PCR experiments in woody tissues, revealed distinct regulation patterns among the genes of interest. This enabled proper classification and characterization of the secondary cell wall related CesA genes, in particular. Bioinformatic analyses of the genome sequence of Populus trichocarpa further provided a complete picture of the number of putative CesA genes retained after several duplication events during tree evolution. In contrast to the previously reported set of ten 'true' CesA genes in many other plant species, the genome of P. trichocarpa encodes 18 putative proteins, which could be assembled into nine groups according to their sequence similarities. Interestingly, studies in the EST database suggested that paralogs within at least two groups have corresponding orthologs in P. tremula x tremuloides, which are furthermore transcribed. This implies that at least some of the duplicated genes have remained functional, or may have acquired a modified function. By focusing on the CesA genes associated with secondary cell wall formation, cellulose synthesis was also studied in poplar cell suspension cultures. Selection of CesA enriched material was performed by determining expression intensities of the CesA genes using RT-PCR, whereupon membrane protein extraction was initiated. CesA proteins are part of large cellulose synthesizing complexes in the plasma membrane. Subsequent proteomic approaches comprised partial purification of these cellulose synthesizing complexes from protein enriched culture material and in vitro cellulose synthesis experiments. De novo synthesized material was successfully characterized and the acquired yields were as high as 50% cellulose (compared to previously reported yields of 30% in other plant systems) of the total in vitro synthesized product. Elevated CesA gene expression levels can thus be correlated to increased protein activity in poplar cell suspension cultures. In addition, antibodies raised against CesA antigens were used in Western blot analyses comprising samples along the protein extraction- and purification procedure. Proteins with corresponding molecular weight to the theoretical 120kDa of CesA proteins were recognized by a range of different specific antibodies. The study demonstrates that poplar cell suspension cultures can provide a valuable model system for studies of cellulose synthesis and different aspects of xylogenesis. / QC 20101005
116

Dynamic Committees for Handling Concept Drift in Databases (DCCD)

AlShammeri, Mohammed 07 November 2012 (has links)
Concept drift refers to a problem that is caused by a change in the data distribution in data mining. This leads to reduction in the accuracy of the current model that is used to examine the underlying data distribution of the concept to be discovered. A number of techniques have been introduced to address this issue, in a supervised learning (or classification) setting. In a classification setting, the target concept (or class) to be learned is known. One of these techniques is called “Ensemble learning”, which refers to using multiple trained classifiers in order to get better predictions by using some voting scheme. In a traditional ensemble, the underlying base classifiers are all of the same type. Recent research extends the idea of ensemble learning to the idea of using committees, where a committee consists of diverse classifiers. This is the main difference between the regular ensemble classifiers and the committee learning algorithms. Committees are able to use diverse learning methods simultaneously and dynamically take advantage of the most accurate classifiers as the data change. In addition, some committees are able to replace their members when they perform poorly. This thesis presents two new algorithms that address concept drifts. The first algorithm has been designed to systematically introduce gradual and sudden concept drift scenarios into datasets. In order to save time and avoid memory consumption, the Concept Drift Introducer (CDI) algorithm divides the number of drift scenarios into phases. The main advantage of using phases is that it allows us to produce a highly scalable concept drift detector that evaluates each phase, instead of evaluating each individual drift scenario. We further designed a novel algorithm to handle concept drift. Our Dynamic Committee for Concept Drift (DCCD) algorithm uses a voted committee of hypotheses that vote on the best base classifier, based on its predictive accuracy. The novelty of DCCD lies in the fact that we employ diverse heterogeneous classifiers in one committee in an attempt to maximize diversity. DCCD detects concept drifts by using the accuracy and by weighing the committee members by adding one point to the most accurate member. The total loss in accuracy for each member is calculated at the end of each point of measurement, or phase. The performance of the committee members are evaluated to decide whether a member needs to be replaced or not. Moreover, DCCD detects the worst member in the committee and then eliminates this member by using a weighting mechanism. Our experimental evaluation centers on evaluating the performance of DCCD on various datasets of different sizes, with different levels of gradual and sudden concept drift. We further compare our algorithm to another state-of-the-art algorithm, namely the MultiScheme approach. The experiments indicate the effectiveness of our DCCD method under a number of diverse circumstances. The DCCD algorithm generally generates high performance results, especially when the number of concept drifts is large in a dataset. For the size of the datasets used, our results showed that DCCD produced a steady improvement in performance when applied to small datasets. Further, in large and medium datasets, our DCCD method has a comparable, and often slightly higher, performance than the MultiScheme technique. The experimental results also show that the DCCD algorithm limits the loss in accuracy over time, regardless of the size of the dataset.
117

The Effect of Treadmill Walking on the Stride Interval Dynamics of Children

Fairley, Jillian Audrey 03 January 2011 (has links)
The stride interval of typical human gait is correlated over thousands of strides. This statistical persistence diminishes with age, disease, and pace-constrained walking. Considering the widespread use of treadmills in rehabilitation and research, it is important to understand the effect of this speed-constrained locomotor modality on stride interval dynamics. To this end, and given that the dynamics of children have been largely unexplored, this study investigated the impact of treadmill walking, both with and without handrail use, on paediatric stride interval dynamics. An initial stationarity analysis of stride interval time series identified both non-stationary and stationary signals during all walking conditions. Subsequent scaling analysis revealed diminished stride interval persistence during unsupported treadmill walking compared to overground walking. Finally, while the correlation between stride interval dynamics and gross energy expenditure was investigated in an effort to elucidate the clinical meaning of persistence, no simple linear correlation was found.
118

Chiral Analysis Using Capillary Electrophoresis Coupled to Mass Spectrometry: Development of Novel Modes and Applications Using Molecular Micelles and Surfactant-Bound Monolithic Columns

He, Jun 13 December 2011 (has links)
Micellar electrokinetic chromatography (MEKC) and capillary electrochromatography (CEC) are two of the major capillary electrophoresis (CE) modes that have been interfaced to mass spectrometry (MS) for sensitive and selective analysis of chiral compounds. This research combines these two modes and expands their applications in chiral CE analysis. Chapter 1 is a review of amino acid based molecular micelles used in MEKC-MS for enantioselective analysis over the past five years. In this chapter, a typical MEKC-MS experiment setup as well as detailed standard operating procedure in synthesis of molecular micelles and running a typical MEKC-MS experiment using the molecular micelles is discussed. Chapter 2 described a multivariate MEKC-MS optimization for the simultaneous analysis of two negatively charged model chiral compounds in negative ion mode with molecular micelles. In this chapter, a central composite design (CCD) is used to first construct a series of experiments to optimize all the important MEKC-MS parameters. Next, response surface methodology (RSM) was used to analyze the interactions between the factors, picking up the best separation and detection conditions, predicting the result of the chiral separation/MS detection, and finally running the actual experiment and comparing the chromatographic results with the predicted parameters. Chapter 3 demonstrates a similar multivariate MEKC-MS optimization for analysis of a positively charged model chiral compound in a positive ion mode. The same CCD and RSM methods were used to optimize the separations and MS sensitivity. Chapter 4 describes a chiral analysis of four neutral benzoin derivatives (hydrobenzoin, benzoin, benzoin methyl ether, and benzoin ethyl ether) using MEKC coupled to atmospheric pressure photo-ionization mass spectrometry (APPI-MS). The same multivariate experimental design strategy was used to optimize the MEKC as well as APPI-MS parameters. Simultaneous chiral separation of all four benzoin derivatives was achieved with high detection sensitivity compared to UV-detection. Chapter 5 introduces a novel one-pot synthesis scheme for an acryloyl-terminated, carbamate-linked surfactant-bound monolith with leucine head group and different chain lengths. The method promises to open up the discovery of new amino acid based polymeric monoliths for chiral separations and enhanced chemoselectivity for simultaneous chiral separations and enhanced detection in CEC and CEC-MS. In Chapter 6, five amide-linked surfactant-bound monoliths with different chain lengths and head groups (leucine, valine, and phenylalanine) were synthesized and characterized. Enantioseparation of several test compounds was achieved by CEC using the monolithic columns. One of the chiral surfactant, sodium 11-acrylamidoundecanoyl-L-leucinate (SAAUL), was polymerized in aqueous solution under 60Co radiation to form molecular micelle poly-SAAUL. MEKC experiments were carried out with the poly-SAAUL molecular micelle to separate ten cationic chiral compounds. The result was compared with the CEC separation using the AAUL monolithic column. This study is the first comparison of chiral CEC and MEKC with the same surfactant monomer, which has the capability of forming both chiral stationary phase for CEC and chiral pseudophase for MEKC.
119

The Effect of Treadmill Walking on the Stride Interval Dynamics of Children

Fairley, Jillian Audrey 03 January 2011 (has links)
The stride interval of typical human gait is correlated over thousands of strides. This statistical persistence diminishes with age, disease, and pace-constrained walking. Considering the widespread use of treadmills in rehabilitation and research, it is important to understand the effect of this speed-constrained locomotor modality on stride interval dynamics. To this end, and given that the dynamics of children have been largely unexplored, this study investigated the impact of treadmill walking, both with and without handrail use, on paediatric stride interval dynamics. An initial stationarity analysis of stride interval time series identified both non-stationary and stationary signals during all walking conditions. Subsequent scaling analysis revealed diminished stride interval persistence during unsupported treadmill walking compared to overground walking. Finally, while the correlation between stride interval dynamics and gross energy expenditure was investigated in an effort to elucidate the clinical meaning of persistence, no simple linear correlation was found.
120

Introduction to Robust, Reliable, and High-Speed Power-Line Communication Systems

Katayama, Masaaki 12 1900 (has links)
No description available.

Page generated in 0.078 seconds