Spelling suggestions: "subject:"nonuniformity correction"" "subject:"nonuniformité correction""
1 |
Illumination Recovery For Optical MicroscopyBrookshire, Charles Thomas 15 June 2020 (has links)
No description available.
|
2 |
Thermal Drift Compensation in Non-Uniformity Correction for an InGaAs PIN Photodetector 3D Flash LiDAR CameraHecht, Anna E. January 2020 (has links)
No description available.
|
3 |
Mathematical theory of the Flutter Shutter : its paradoxes and their solutionTendero, Yohann 22 June 2012 (has links) (PDF)
This thesis provides theoretical and practical solutions to two problems raised by digital photography of moving scenes, and infrared photography. Until recently photographing moving objects could only be done using short exposure times. Yet, two recent groundbreaking works have proposed two new designs of camera allowing arbitrary exposure times. The flutter shutter of Agrawal et al. creates an invertible motion blur by using a clever shutter technique to interrupt the photon flux during the exposure time according to a well chosen binary sequence. The motion-invariant photography of Levin et al. gets the same result by accelerating the camera at a constant rate. Both methods follow computational photography as a new paradigm. The conception of cameras is rethought to include sophisticated digital processing. This thesis proposes a method for evaluating the image quality of these new cameras. The leitmotiv of the analysis is the SNR (signal to noise ratio) of the image after deconvolution. It gives the efficiency of these new camera design in terms of image quality. The theory provides explicit formulas for the SNR. It raises two paradoxes of these cameras, and resolves them. It provides the underlying motion model of each flutter shutter, including patented ones. A shorter second part addresses the the main quality problem in infrared video imaging, the non-uniformity. This perturbation is a time-dependent noise caused by the infrared sensor, structured in columns. The conclusion of this work is that it is not only possible but also efficient and robust to perform the correction on a single image. This permits to ensure the absence of ''ghost artifacts'', a classic of the literature on the subject, coming from inadequate processing relative to the acquisition model.
|
4 |
Mathematical theory of the Flutter Shutter : its paradoxes and their solution / Théorie mathématique du Flutter Shutter : ses paradoxes et leur solutionTendero, Yohann 22 June 2012 (has links)
Cette thèse apporte des solutions théoriques et pratiques à deux problèmes soulevés par la photographie numérique en présence de mouvement, et par la photographie infrarouge. La photographie d'objets en mouvement semblait ne pouvoir se faire qu'avec des temps d'exposition très courts, jusqu'à ce que deux travaux révolutionnaires proposent deux nouveaux types de caméra permettant un temps d'exposition arbitraire. Le flutter shutter de Agrawal et al. crée en effet un flou inversible, grâce à un obturateur aux séquences d'ouverture-fermeture bie{\it n choisies. Le motion invariant photography de Levin et al. obtient ce même effet avec une accélération constante de la caméra. Les deux méthodes suivent ainsi un nouveau paradigme, la computational photography, selon lequel les caméras sont repensées, car elles incluent un traitement numérique sophistiqué. Cette thèse propose une méthode pour évaluer la qualité image des nouvelles caméras. Le fil conducteur de l'analyse est donc l'évaluation du SNR (signal to noise ratio) de l'image obtenue après déconvolution. La théorie fournit des formules explicites pour le SNR, soulève deux paradoxes de ces caméras, et les résout. Elle permet d'obtenir le modèle de mouvement sous-jacent à chaque flutter shutter, notamment tous ceux qui sont brevetés. Une seconde partie plus brève aborde le problème de qualité principal en imagerie vidéo infrarouge, la non-uniformité. Il s'agit d'un bruit évolutif et structuré en colonnes causé par le capteur. La conclusion des travaux est qu'il est non seulement possible mais également efficace et robuste d'effectuer la correction sur une seule image. Cela permet de contourner le problème récurrent des "ghost artifacts"résultant d'une incohérence du traitement par rapport au modèle d'acquisition. / This thesis provides theoretical and practical solutions to two problems raised by digital photography of moving scenes, and infrared photography. Until recently photographing moving objects could only be done using short exposure times. Yet, two recent groundbreaking works have proposed two new designs of camera allowing arbitrary exposure times. The flutter shutter of Agrawal et al. creates an invertible motion blur by using a clever shutter technique to interrupt the photon flux during the exposure time according to a well chosen binary sequence. The motion-invariant photography of Levin et al. gets the same result by accelerating the camera at a constant rate. Both methods follow computational photography as a new paradigm. The conception of cameras is rethought to include sophisticated digital processing. This thesis proposes a method for evaluating the image quality of these new cameras. The leitmotiv of the analysis is the SNR (signal to noise ratio) of the image after deconvolution. It gives the efficiency of these new camera design in terms of image quality. The theory provides explicit formulas for the SNR. It raises two paradoxes of these cameras, and resolves them. It provides the underlying motion model of each flutter shutter, including patented ones. A shorter second part addresses the the main quality problem in infrared video imaging, the non-uniformity. This perturbation is a time-dependent noise caused by the infrared sensor, structured in columns. The conclusion of this work is that it is not only possible but also efficient and robust to perform the correction on a single image. This permits to ensure the absence of ``ghost artifacts'', a classic of the literature on the subject, coming from inadequate processing relative to the acquisition model.
|
5 |
Evaluating and Correcting 3D Flash LiDAR ImagersReinhardt, Andrew David 09 August 2021 (has links)
No description available.
|
Page generated in 0.1015 seconds