Spelling suggestions: "subject:"coextensive statististics"" "subject:"coextensive statisitics""
1 |
Teoria cinética não extensiva e transporte colisional em plasmas magnetizados / Non-Extensive Kinetic Theory and Collisional Transport in Magnetized PlasmasOliveira, Diego Sales de 20 July 2018 (has links)
Apesar dos avanços na última metade de século na teoria de transporte em Física de Plasmas, muitos de seus aspectos ainda são pouco compreendidos. Grande parte dessa limitação se deve à carência de modelos de primeiros princípios minimamente capazes de reproduzir os resultados experimentais. De fato, sem o embasamento em hipóteses fundamentais, os modelos devem se restringir à descrição do comportamento observado nos diferentes regimes de transporte no plasma, sem necessariamente especificar por que ou quais são os mecanismos envolvidos; até mesmo a identificação dos elementos envolvidos no transporte, por exemplo, se partículas ou células convectivas, é prejudicada. Uma abordagem que vem ganhando destaque na comunidade de Física de Plasmas ao longo dos anos é a estatística não-extensiva. Em particular, o interesse na teoria de Tsallis está na sua capacidade de descrever sistemas distantes do equilíbrio termodinâmico, uma característica comum à maioria dos plasmas de laboratório e astrofísicos. De fato, nessas circunstâncias, é sabido que as funções de distribuição das partículas são distantes das distribuições Maxwellianas, com longas-caudas, especialmente para os elétrons. A capacidade da teoria de Tsallis em descrever fenômenos da Física de Plasmas é retratada nas suas diversas aplicações encontradas na literatura, por exemplo, o transporte anômalo, oscilações eletrostáticas, ventos solares, plasmas empoeirados, onde é sabido que as previsões dadas pela estatística de Maxwell-Boltzmann não são capazes de descrever corretamente os resultados experimentais. A proposta desta tese de doutoramento é utilizar a estatística não-extensiva para determinar o transporte colisional em plasmas intensamente magnetizados. O desenvolvimento completo do modelo de transporte no contexto não-extensivo é estabelecido rigorosamente: partindo da definição da entropia de Tsallis e da hipótese das interações fracas (a condição do transporte colisional), somos capazes de deduzir as equações de fluidos utilizando apenas métodos estatísticos genéricos, e sem hipóteses adicionais. Nesse percurso, apresentamos, sempre de maneira consistente com a estatística não-extensiva, a definição da temperatura; a dedução da equação cinética com o operador colisional para plasmas; a generalização do método utilizado por Braginskii para determinar as soluções aproximadas da equação cinética; e o cálculo dos coeficientes de transporte. Porém, também apresentamos a aplicação de nosso modelo no transporte de calor em ventos solares e no pulso frio em plasmas de laboratório. / Despite the advances in the last half century in the plasma transport theory, many aspects of such phenomena remain poorly understood. Most of this limitation is due to the lack o first principles models capable of reproducing experimental observations. In fact, without a fundamental hypothesis, the models are restricted to describing the behavior of the observed plasma transport in diferent regimes, without specifying why or which mechanisms take part in the process; even the determination of the elements involved in the transport, for instance, whether particles or convective cells, is impaired. One approach that has been attracting attention in Plasma Physics community over the years is the non-extensive statistics. In particular, the interest in the Tsallis\'s theory lies in its ability to describe systems far from thermodynamic equilibrium, a common feature in most laboratory and astrophysical plasmas. The capability of the non-extensive statistics in describing phenomena of Plasma Physics is portrayed in various applications, for example, the anomalous transport, electrostatic oscillations, solar winds, dusty plasmas, where it is know that the predictions given by Maxwell-Boltzmann statistics cannot describe the experimental results. Indeed, under such cases, it is well known that the particle distribution functions are quite distant from Maxwellian distributions, with long tails, especially for electrons. The purpose of this doctoral thesis is to use the non-extensive statistics in order to obtain a model for the collisional transport in strongly magnetized plasmas. The complete development of the model in the non-extensive context is strictly established; starting with the definition of the Tsallis entropy and the weak interactions hypothesis (the collisional transport condition), we are able to derive the fluid equations using only generic statistical methods, without additional hypotheses. For such task, we present, consistently with non-extensive statistics, the definition of temperature; the deduction of the kinetic equation with the collision operator for plasmas, which are also appropriated for the determination of the fluid equations; the generalization of the method used by Braginskii to approximate the solution of the kinetic equation for electrons; and the calculation of electron transport coeficients. Lastly, we present the application of our model in the heat transport in the solar winds and in the phenomena of the cold pulse in laboratory plasmas.
|
2 |
Teoria cinética não extensiva e transporte colisional em plasmas magnetizados / Non-Extensive Kinetic Theory and Collisional Transport in Magnetized PlasmasDiego Sales de Oliveira 20 July 2018 (has links)
Apesar dos avanços na última metade de século na teoria de transporte em Física de Plasmas, muitos de seus aspectos ainda são pouco compreendidos. Grande parte dessa limitação se deve à carência de modelos de primeiros princípios minimamente capazes de reproduzir os resultados experimentais. De fato, sem o embasamento em hipóteses fundamentais, os modelos devem se restringir à descrição do comportamento observado nos diferentes regimes de transporte no plasma, sem necessariamente especificar por que ou quais são os mecanismos envolvidos; até mesmo a identificação dos elementos envolvidos no transporte, por exemplo, se partículas ou células convectivas, é prejudicada. Uma abordagem que vem ganhando destaque na comunidade de Física de Plasmas ao longo dos anos é a estatística não-extensiva. Em particular, o interesse na teoria de Tsallis está na sua capacidade de descrever sistemas distantes do equilíbrio termodinâmico, uma característica comum à maioria dos plasmas de laboratório e astrofísicos. De fato, nessas circunstâncias, é sabido que as funções de distribuição das partículas são distantes das distribuições Maxwellianas, com longas-caudas, especialmente para os elétrons. A capacidade da teoria de Tsallis em descrever fenômenos da Física de Plasmas é retratada nas suas diversas aplicações encontradas na literatura, por exemplo, o transporte anômalo, oscilações eletrostáticas, ventos solares, plasmas empoeirados, onde é sabido que as previsões dadas pela estatística de Maxwell-Boltzmann não são capazes de descrever corretamente os resultados experimentais. A proposta desta tese de doutoramento é utilizar a estatística não-extensiva para determinar o transporte colisional em plasmas intensamente magnetizados. O desenvolvimento completo do modelo de transporte no contexto não-extensivo é estabelecido rigorosamente: partindo da definição da entropia de Tsallis e da hipótese das interações fracas (a condição do transporte colisional), somos capazes de deduzir as equações de fluidos utilizando apenas métodos estatísticos genéricos, e sem hipóteses adicionais. Nesse percurso, apresentamos, sempre de maneira consistente com a estatística não-extensiva, a definição da temperatura; a dedução da equação cinética com o operador colisional para plasmas; a generalização do método utilizado por Braginskii para determinar as soluções aproximadas da equação cinética; e o cálculo dos coeficientes de transporte. Porém, também apresentamos a aplicação de nosso modelo no transporte de calor em ventos solares e no pulso frio em plasmas de laboratório. / Despite the advances in the last half century in the plasma transport theory, many aspects of such phenomena remain poorly understood. Most of this limitation is due to the lack o first principles models capable of reproducing experimental observations. In fact, without a fundamental hypothesis, the models are restricted to describing the behavior of the observed plasma transport in diferent regimes, without specifying why or which mechanisms take part in the process; even the determination of the elements involved in the transport, for instance, whether particles or convective cells, is impaired. One approach that has been attracting attention in Plasma Physics community over the years is the non-extensive statistics. In particular, the interest in the Tsallis\'s theory lies in its ability to describe systems far from thermodynamic equilibrium, a common feature in most laboratory and astrophysical plasmas. The capability of the non-extensive statistics in describing phenomena of Plasma Physics is portrayed in various applications, for example, the anomalous transport, electrostatic oscillations, solar winds, dusty plasmas, where it is know that the predictions given by Maxwell-Boltzmann statistics cannot describe the experimental results. Indeed, under such cases, it is well known that the particle distribution functions are quite distant from Maxwellian distributions, with long tails, especially for electrons. The purpose of this doctoral thesis is to use the non-extensive statistics in order to obtain a model for the collisional transport in strongly magnetized plasmas. The complete development of the model in the non-extensive context is strictly established; starting with the definition of the Tsallis entropy and the weak interactions hypothesis (the collisional transport condition), we are able to derive the fluid equations using only generic statistical methods, without additional hypotheses. For such task, we present, consistently with non-extensive statistics, the definition of temperature; the deduction of the kinetic equation with the collision operator for plasmas, which are also appropriated for the determination of the fluid equations; the generalization of the method used by Braginskii to approximate the solution of the kinetic equation for electrons; and the calculation of electron transport coeficients. Lastly, we present the application of our model in the heat transport in the solar winds and in the phenomena of the cold pulse in laboratory plasmas.
|
Page generated in 0.0885 seconds