• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Techniques For Nonlinear Material Characterization: A Nonlinear Spectrometer Using A White-light Continuum Z-scan

Balu, Mihaela 01 January 2006 (has links)
The main goal of this dissertation is to introduce and demonstrate a new method for the rapid determination of the nonlinear absorption spectra and the dispersion of the nonlinear refraction of optical materials in the visible and near IR spectral regions. However, conventional methods like, white-light continuum pump-probe and Z-scan techniques were used to measure the peak 2PA cross-sections for a number of commercially available photoinitiators. In the new method mentioned above, a high energy, broadband femtosecond white-light continuum is used to replace the single wavelength source conventionally used in a Z-scan experiment. In a Z-scan experiment, the transmittance of a focused beam through a sample is monitored as the sample travels through the focus, in the Z direction, along the focused beam. Providing the sample exhibits nonlinear absorption and/or refraction, the detector monitors a change in transmittance and/or a change in the beam divergence (if the energy is partially collected through an aperture in front of the detector). Replacing the single wavelength source with a white-light continuum allows for a much faster way of measuring nonlinear absorption/refraction spectra. This could eliminate the need for using other tunable sources (e.g. Optical Parameter Generators/Amplifiers) for nonlinear measurements. These sources made nonlinear spectroscopy using Z-scan experiments a time consuming task. This new source/method allows for rapid and simultaneous measurement of the nonlinear absorption spectrum and the dispersion of the nonlinear refraction. We have confirmed the functionality of the continuum as a source for nonlinear optical characterization of materials by using it to perform Z-scans on the well characterized semiconductors ZnSe and ZnS and on solutions of organic dyes.

Page generated in 0.1766 seconds