• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 16
  • 7
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 69
  • 69
  • 24
  • 20
  • 11
  • 10
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling Target Zone with nonlinear regression-the cases of German, Italy and France

Tsai, Shang-ying 30 July 2007 (has links)
The exchange rate target zone has been paid much attention in the early 1990 initially by Krugman (1991).It expressed when exchange rate surpasses the band of exchange rate that implicitly or explicitly determined by the central bank, the central Bank will intervene the foreign exchange by buying or selling foreign exchange to ensure the exchange rate staying inside the band, otherwise, the exchange rate will be allowed to fluctuate inside the band freely.According to Krugman (1991), when economic system faces random disturbances, the exchange rate target zone regime is helpful to narrow down the exchange rate volatility contrast to that in the floating exchange rate regime. That is, the exchange rate target zone has more essential stability,which is called ``honeymoon effect". In recent decade, Krugman's exchange rate target zone model has been tested empirically.In this thesis, the smooth transition autoregression with target zone (STARTZ) proposed originally by Lundbergh and Ter"{a}svirta (2006) and logistic smooth transition regression with two thresholds (LSTR2) are used to make comparisons for in-sample fitness and out-of-sample forcastability.Furthermore, we also test two important assumptions of the exchange rate target zone model: the credibility assumption and marginal interventions. The data are constructed with 755 daily spot exchange rates, denominated in Eurpean Currency Unit (ECU), from January 14, 1987 to December 29, 1989, in German, France, and Italy.We split the sample into in-sample (570 observations), and out-of-sample (185 observations), and make use of STARTZ-GARCH and LSTR2-STGARCH to fit the in-sample regimes, and apply Rapach and Wohard (2006)'s Bootstapping to generate the out-of-sample forecasts. Finally,we make use of Diebold and Mariano (1995)'s predictive accuracy tests to compare the out-of-sample forecastability between STARTZ and LSTR2 models.According to the empirical results, we can find that LSTR2 model has not bad performance in fitting the in-sample and forecasting the out-of-sample data compared to STARTZ model.
2

A Nonlinear Mixture Autoregressive Model For Speaker Verification

Srinivasan, Sundararajan 30 April 2011 (has links)
In this work, we apply a nonlinear mixture autoregressive (MixAR) model to supplant the Gaussian mixture model for speaker verification. MixAR is a statistical model that is a probabilistically weighted combination of components, each of which is an autoregressive filter in addition to a mean. The probabilistic mixing and the datadependent weights are responsible for the nonlinear nature of the model. Our experiments with synthetic as well as real speech data from standard speech corpora show that MixAR model outperforms GMM, especially under unseen noisy conditions. Moreover, MixAR did not require delta features and used 2.5x fewer parameters to achieve comparable or better performance as that of GMM using static as well as delta features. Also, MixAR suffered less from overitting issues than GMM when training data was sparse. However, MixAR performance deteriorated more quickly than that of GMM when evaluation data duration was reduced. This could pose limitations on the required minimum amount of evaluation data when using MixAR model for speaker verification.
3

The "Fair" Triathlon: Equating Standard Deviations Using Non-Linear Bayesian Models

Curtis, Steven McKay 14 May 2004 (has links) (PDF)
The Ironman triathlon was created in 1978 by combining events with the longest distances for races then contested in Hawaii in swimming, cycling, and running. The Half Ironman triathlon was formed using half the distances of each of the events in the Ironman. The Olympic distance triathlon was created by combining events with the longest distances for races sanctioned by the major federations for swimming, cycling, and running. The relative importance of each event in overall race outcome was not given consideration when determining the distances of each of the races in modern triathlons. Thus, there is a general belief among triathletes that the swimming portion of the standard-distance triathlons is underweighted. We present a nonlinear Bayesian model for triathlon finishing times that models time and standard deviation of time as a function of distance. We use this model to create "fair" triathlons by equating the standard deviations of the times taken to complete the swimming, cycling, and running events. Thus, in these "fair" triathlons, a one standard deviation improvement in any event has an equivalent impact on overall race time.
4

Robust Analysis of M-Estimators of Nonlinear Models

Neugebauer, Shawn Patrick 16 August 1996 (has links)
Estimation of nonlinear models finds applications in every field of engineering and the sciences. Much work has been done to build solid statistical theories for its use and interpretation. However, there has been little analysis of the tolerance of nonlinear model estimators to deviations from assumptions and normality. We focus on analyzing the robustness properties of M-estimators of nonlinear models by studying the effects of deviations from assumptions and normality on these estimators. We discuss St. Laurent and Cook's Jacobian Leverage and identify the relationship of the technique to the robustness concept of influence. We derive influence functions for M-estimators of nonlinear models and show that influence of position becomes, more generally, influence of model. The result shows that, for M-estimators, we must bound not only influence of residual but also influence of model. Several examples highlight the unique problems of nonlinear model estimation and demonstrate the utility of the influence function. / Master of Science
5

Model Reduction and Nonlinear Model Predictive Control of Large-Scale Distributed Parameter Systems with Applications in Solid Sorbent-Based CO2 Capture

Yu, Mingzhao 01 April 2017 (has links)
This dissertation deals with some computational and analytic challenges for dynamic process operations using first-principles models. For processes with significant spatial variations, spatially distributed first-principles models can provide accurate physical descriptions, which are crucial for offline dynamic simulation and optimization. However, the large amount of time required to solve these detailed models limits their use for online applications such as nonlinear model predictive control (NMPC). To cope with the computational challenge, we develop computationally efficient and accurate dynamic reduced order models which are tractable for NMPC using temporal and spatial model reduction techniques. Then we introduce an input and state blocking strategy for NMPC to further enhance computational efficiency. To improve the overall economic performance of process systems, one promising solution is to use economic NMPC which directly optimizes the economic performance based on first-principles dynamic models. However, complex process models bring challenges for the analysis and design of stable economic NMPC controllers. To solve this issue, we develop a simple and less conservative regularization strategy with focuses on a reduced set of states to design stable economic NMPC controllers. In this thesis, we study the operation problems of a solid sorbent-based CO2 capture system with bubbling fluidized bed (BFB) reactors as key components, which are described by a large-scale nonlinear system of partial-differential algebraic equations. By integrating dynamic reduced models and blocking strategy, the computational cost of NMPC can be reduced by an order of magnitude, with almost no compromise in control performance. In addition, a sensitivity based fast NMPC algorithm is utilized to enable the online control of the BFB reactor. For economic NMPC study, compared with full space regularization, the reduced regularization strategy is simpler to implement and lead to less conservative regularization weights. We analyze the stability properties of the reduced regularization strategy and demonstrate its performance in the economic NMPC case study for the CO2 capture system.
6

Limit Values and Factors influencing Limit Values of Spruce

Zhang, Liming January 2011 (has links)
We collected the data for decomposition of spruce litter to determine the limit values of mass loss and to find both chemical and climate factors that influence limit values. Our data contained 28 sequences of spruce which mainly in Sweden and a small part in other places. We choose mean annual temperature (MAT) and mean annual precipitation (MAP) as climate factors and water solubles, lignin, N, P, K, Ca, Mg and Mn as chemical factors. Then we got the estimated limit values by performing a nonlinear model with mass loss and time spots, and found out the influential factors by using another linear mixed model. At the end we knew that linear mixed model is a proper and efficient approach for determining the factors, P and MAP are the significant factors and Species is a good random effect to explain the variance within groups.
7

Robust Empirical Model-Based Algorithms for Nonlinear Processes

Diaz Mendoza, Juan Rosendo January 2010 (has links)
This research work proposes two robust empirical model-based predictive control algorithms for nonlinear processes. Chemical process are generally highly nonlinear thus predictive control algorithms that explicitly account for the nonlinearity of the process are expected to provide better closed-loop performance as compared to algorithms based on linear models. Two types of models can be considered for control: first-principles and empirical. Empirical models were chosen for the proposed algorithms for the following reasons: (i) they are less complex for on-line optimization, (ii) they are easy to identify from input-output data and (iii) their structure is suitable for the formulation of robustness tests. One of the key problems of every model that is used for prediction within a control strategy is that some model parameters cannot be known accurately due to measurement noise and/or error in the structure of the assumed model. In the robust control approach it is assumed that processes can be represented by models with parameters' values that are assumed to lie between a lower and upper bound or equivalently, that these parameters can be represented by a nominal value plus uncertainty. When this uncertainty in control parameters is not considered by the controller the control actions might be insufficient to effectively control the process and in some extreme cases the closed-loop may become unstable. Accordingly, the two robust control algorithms proposed in the current work explicitly account for the effect of uncertainty on stability and closed-loop performance. The first proposed controller is a robust gain-scheduling model predictive controller (MPC). In this case the process is represented within each operating region by a state-affine model obtained from input-output data. The state-affine model matrices are used to obtain a state-space based MPC for every operating region. By combining the state-affine, disturbance and controller equations a closed-loop representation was obtained. Then, the resulting mathematical representation was tested for robustness with linear matrix inequalities (LMI's) based on a test where the vertices of the parameter box were obtained by an iterative procedure. The result of the LMI's test gives a measure of performance referred to as γ that relates the effect of the disturbances on the process outputs. Finally, for the gain-scheduling part of the algorithm a set of rules was proposed to switch between the available controllers according to the current process conditions. Since every combination of the controller tuning parameters results in a different value of γ, an optimization problem was proposed to minimize γ with respect to the tuning parameters. Accordingly, for the proposed controller it was ensured that the effect of the disturbances on the output variables was kept to its minimum. A bioreactor case study was presented to show the benefits of the proposed algorithm. For comparison purposes a non-robust linear MPC was also designed. The results show that the proposed algorithm has a clear advantage in terms of performance as compared to non-robust linear MPC techniques. The second controller proposed in this work is a robust nonlinear model predictive controller (NMPC) based on an empirical Volterra series model. The benefit of using a Volterra series model for this case is that its structure can be split in two sections that account for the nominal and uncertain parameter values. Similar to the previously proposed gain-scheduled controller the model parameters were obtained from input-output data. After identifying the Volterra model, an interconnection matrix and its corresponding uncertainty description were found. The interconnection matrix relates the process inputs and outputs and is built according to the type of cost function that the controller uses. Based on the interconnection representing the system a robustness test was proposed based on a structured singular value norm calculation (SSV). The test is based on a min-max formulation where the worst possible closed-loop error is minimized with respect to the manipulated variables. Additional factors that were considered in the cost function were: manipulated variables weighting, manipulated variables restrictions and a terminal condition. To show the benefits of this controller two case studies were considered, a single-input-single-output (SISO) and a multiple-input-multiple-output (MIMO) process. Both case studies show that the proposed controller is able to control the process. The results showed that the controller could efficiently track set-points in the presence of disturbances while complying with the saturation limits imposed on the manipulated variables. This controller was also compared against a non-robust linear MPC, non-robust NMPC and non-robust first-principles NMPC. These comparisons were performed for different levels of uncertainty and for different values of the suppression or control actions weights. It was shown through these comparisons that a tradeoff exists between nominal performance and robustness to model error. Thus, for larger weights the controller is less aggressive resulting in more sluggish performance but less sensitivity to model error thus resulting in smaller differences between the robust and non-robust schemes. On the other hand when these weights are smaller the controller is more aggressive resulting in better performance at the nominal operating conditions but also leading to larger sensitivity to model error when the system is operated away from nominal conditions. In this case, as a result of this increased sensitivity to model error, the robust controller is found to be significantly better than the non-robust one.
8

Nonlinear Analysis of Stock Correlations among East Asian Countries, and The U.S., Japan, and German

Huang, Hsiao-wen 14 July 2008 (has links)
With gradually increasing interdependence of international political and economic environments, part of Asian countries' financial markets reform adopted progressive policies towards liberalization and internationalization. Therefore, the integration of international financial markets has attracted a bunch of scholars to investigate related topics of international stock market. Granger and (1993) documented that most of the economic variables have nonlinear characters. Chelley-Steeley (2004) uses smooth transition regression model to explore the financial market integration of regional and global markets among emerging and developed countries. Smooth transition regression model considered the possibility of nonlinear changes in regression parameters. This paper applies the smooth transition regression model to reinvestigate Chelley-Steeley¡¦s (2004) study of nonlinear relationship of stock markets among some East Asian countries and the United States, Japan and Germany. The main difference of our model and Chelley-Steeley¡¦ model is that we relax his constant market index correlation between two countries by allowing the autoregressive process on market index correlation. Empirical evidences of linear model, original non-linear model and our non-linear extension model show that our non-linear extension model outperformedthe other two models in terms of goodness of fit.
9

Robust Empirical Model-Based Algorithms for Nonlinear Processes

Diaz Mendoza, Juan Rosendo January 2010 (has links)
This research work proposes two robust empirical model-based predictive control algorithms for nonlinear processes. Chemical process are generally highly nonlinear thus predictive control algorithms that explicitly account for the nonlinearity of the process are expected to provide better closed-loop performance as compared to algorithms based on linear models. Two types of models can be considered for control: first-principles and empirical. Empirical models were chosen for the proposed algorithms for the following reasons: (i) they are less complex for on-line optimization, (ii) they are easy to identify from input-output data and (iii) their structure is suitable for the formulation of robustness tests. One of the key problems of every model that is used for prediction within a control strategy is that some model parameters cannot be known accurately due to measurement noise and/or error in the structure of the assumed model. In the robust control approach it is assumed that processes can be represented by models with parameters' values that are assumed to lie between a lower and upper bound or equivalently, that these parameters can be represented by a nominal value plus uncertainty. When this uncertainty in control parameters is not considered by the controller the control actions might be insufficient to effectively control the process and in some extreme cases the closed-loop may become unstable. Accordingly, the two robust control algorithms proposed in the current work explicitly account for the effect of uncertainty on stability and closed-loop performance. The first proposed controller is a robust gain-scheduling model predictive controller (MPC). In this case the process is represented within each operating region by a state-affine model obtained from input-output data. The state-affine model matrices are used to obtain a state-space based MPC for every operating region. By combining the state-affine, disturbance and controller equations a closed-loop representation was obtained. Then, the resulting mathematical representation was tested for robustness with linear matrix inequalities (LMI's) based on a test where the vertices of the parameter box were obtained by an iterative procedure. The result of the LMI's test gives a measure of performance referred to as γ that relates the effect of the disturbances on the process outputs. Finally, for the gain-scheduling part of the algorithm a set of rules was proposed to switch between the available controllers according to the current process conditions. Since every combination of the controller tuning parameters results in a different value of γ, an optimization problem was proposed to minimize γ with respect to the tuning parameters. Accordingly, for the proposed controller it was ensured that the effect of the disturbances on the output variables was kept to its minimum. A bioreactor case study was presented to show the benefits of the proposed algorithm. For comparison purposes a non-robust linear MPC was also designed. The results show that the proposed algorithm has a clear advantage in terms of performance as compared to non-robust linear MPC techniques. The second controller proposed in this work is a robust nonlinear model predictive controller (NMPC) based on an empirical Volterra series model. The benefit of using a Volterra series model for this case is that its structure can be split in two sections that account for the nominal and uncertain parameter values. Similar to the previously proposed gain-scheduled controller the model parameters were obtained from input-output data. After identifying the Volterra model, an interconnection matrix and its corresponding uncertainty description were found. The interconnection matrix relates the process inputs and outputs and is built according to the type of cost function that the controller uses. Based on the interconnection representing the system a robustness test was proposed based on a structured singular value norm calculation (SSV). The test is based on a min-max formulation where the worst possible closed-loop error is minimized with respect to the manipulated variables. Additional factors that were considered in the cost function were: manipulated variables weighting, manipulated variables restrictions and a terminal condition. To show the benefits of this controller two case studies were considered, a single-input-single-output (SISO) and a multiple-input-multiple-output (MIMO) process. Both case studies show that the proposed controller is able to control the process. The results showed that the controller could efficiently track set-points in the presence of disturbances while complying with the saturation limits imposed on the manipulated variables. This controller was also compared against a non-robust linear MPC, non-robust NMPC and non-robust first-principles NMPC. These comparisons were performed for different levels of uncertainty and for different values of the suppression or control actions weights. It was shown through these comparisons that a tradeoff exists between nominal performance and robustness to model error. Thus, for larger weights the controller is less aggressive resulting in more sluggish performance but less sensitivity to model error thus resulting in smaller differences between the robust and non-robust schemes. On the other hand when these weights are smaller the controller is more aggressive resulting in better performance at the nominal operating conditions but also leading to larger sensitivity to model error when the system is operated away from nominal conditions. In this case, as a result of this increased sensitivity to model error, the robust controller is found to be significantly better than the non-robust one.
10

Impact of Discretization Techniques on Nonlinear Model Reduction and Analysis of the Structure of the POD Basis

Unger, Benjamin 19 November 2013 (has links)
In this thesis a numerical study of the one dimensional viscous Burgers equation is conducted. The discretization techniques Finite Differences, Finite Element Method and Group Finite Elements are applied and their impact on model reduction techniques, namely Proper Orthogonal Decomposition (POD), Group POD and the Discrete Empirical Interpolation Method (DEIM), is studied. This study is facilitated by examination of several common ODE solvers. Embedded in this process, some results on the structure of the POD basis and an alternative algorithm to compute the POD subspace are presented. Various numerical studies are conducted to compare the different methods and the to study the interaction of the spatial discretization on the ROM through the basis functions. Moreover, the results are used to investigate the impact of Reduced Order Models (ROM) on Optimal Control Problems. To this end, the ROM is embedded in a Trust Region Framework and the convergence results of Arian et al. (2000) is extended to POD-DEIM. Based on the convergence theorem and the results of the numerical studies, the emphasis is on implementation strategies for numerical speedup. / Master of Science

Page generated in 0.0575 seconds