• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 364
  • 97
  • 72
  • 48
  • 22
  • 16
  • 7
  • 6
  • 5
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 760
  • 760
  • 219
  • 126
  • 112
  • 105
  • 102
  • 99
  • 97
  • 97
  • 90
  • 89
  • 86
  • 73
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Frequency-agile hyper-rayleigh scattering studies of nonlinear optical chromophores /

Firestone, Kimberly A. January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (leaves 134-145).
62

Characterization of nonlinear optical polymers and dendrimers for electro-optic applications /

Haller, Marnie A. January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (leaves 126-130).
63

Enhancing the third-order nonlinear optical properties of porphyrins and molecular wires /

Humphrey, Jonathan Leslie, January 2006 (has links)
Thesis (Ph. D.)--Virginia Commonwealth University, 2006. / Prepared for: Dept. of Chemistry. Bibliography: leaves 95-102. Also available online.
64

Classical and quantum nonlinear optics in confined photonic structures

Ghafari Banaee, Mohamadreza 05 1900 (has links)
Nonlinear optical phenomena associated with high-order soliton breakup in photonic crystal fibres and squeezed state generation in three dimensional photonic crystal microcavities are investigated. In both cases, the properties of periodically patterned, high-index contrast dielectric structures are engineered to control the dispersion and local field enhancements of the electromagnetic field. Ultra-short pulse propagation in a polarization-maintaining microstructured fibre (with 1 um core diameter and 1.1 m length) is investigated experimentally and theoretically. For an 80 MHz train of 130 fs pulses with average propagating powers in the fibre up to 13.8 mW, the output spectra consist of multiple discrete solitons that shift continuously to lower energies as they propagate in the lowest transverse mode of the fibre. The number of solitons and the amount that they shift both increase with the launched power. All of the data is quantitatively consistent with solutions of the nonlinear Schrodinger equation, but only when the Raman nonlinearity is treated without approximation, and self-steepening is included. The feasibility of using a parametric down-conversion process to generate squeezed electromagnetic states in 3D photonic crystal microcavity structures is investigated for the first time. The spectrum of the squeezed light is theoretically calculated by using an open cavity quantum mechanical formalism. The cavity communicates with two main channels, which model vertical radiation losses and coupling into a single-mode waveguide respectively. The amount of squeezing is determined by the correlation functions relating the field quadratures of light coupled into the waveguide. All of the relevant model parameters are realistically estimated using 3D finite-difference time-domain (FDTD) simulations. Squeezing up to ~20% below the shot noise level is predicted for reasonable optical excitation levels. To preserve the squeezed nature of the light generated in the microcavity, a unidirectional coupling geometry from the microcavity to a ridge waveguide in a slab photonic crystal structure is studied. The structure was successfully fabricated in a silicon membrane, and experimental measurements of the efficiency for the signal coupled out of the structure are in good agreement with the result of FDTD simulations. The coupling efficiency of the cavity mode to the output channel is ~60%. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
65

Study of the Kerr Phase-Interrogator and Its Applications

Lu, Yang January 2015 (has links)
This thesis proposes and develops a novel optic configuration, Kerr phase-interrogator, which investigates the phase-shift between two sinusoidally modulated optical signals (SMOS) utilizing Kerr effect. The Kerr phase-interrogator gives birth to an entirely new technique for measuring the phase-shift between two light-waves. Taking advantage of all-optical signal processing, ultrafast responses, and being free from the coherent properties of a laser source, the Kerr phase-interrogator based technique for measuring the phase-shift is a promising novel approach for monitoring and sensing applications. The thesis begins with theoretically demonstrating the operation of Kerr phase-interrogator. As the core of optical process occurs in Kerr phase-interrogator, nonlinear interactions between two SMOSs in the Kerr medium are theoretically analyzed utilizing the models of nonlinear phase-modulation and four-wave mixing (FWM). The phase-modulation-based model is intuitive and allows for conceptual understanding of the operation of the Kerr phase-interrogator. However, this model does not account for the impact of chromatic-dispersion (CD) of the Kerr medium on the operation of the Kerr phase-interrogator. Compared with the former model, the FWM-based model is essential for acquiring insight into Kerr phase-interrogator, and can explain the CD impact of the Kerr medium. The analytical solution of the power of the first order sideband as a result of the nonlinear interaction is obtained in both theoretical models. The obtained solution shows sinusoidal dependence of the power on the phase-shift of the SMOSs. Utilizing this sinusoidal dependence, the phase-shift of two SMOSs can be acquired by measuring the power of the first-order sideband. Birefringence and CD are critical factors that affect the nonlinear interactions and thus impact the operation of Kerr phase-interrogator. In this work, vector analysis is performed on the nonlinear interaction between two SMOSs in a Kerr medium with randomly varying birefringence, and the effect of polarization-states of SMOSs on the operation of Kerr phase-interrogator is investigated. Impact of CD of Kerr medium on the operation of Kerr phase-interrogator is theoretically investigated using theory of FWM and is experimentally verified. Four typical applications, which comprehensively reflect the advantages of Kerr phase-interrogator, are proposed and experimentally demonstrated in this thesis. First, we present a novel approach for measurements of CD in long optical fibers using a Kerr phase-interrogator. The Kerr phase-interrogator measures the phase variation of a SMOS induced by CD in a fiber under test as the laser carrier wavelength is varied. This approach takes advantage of all-optical signal-processing based on Kerr effect to acquire the phase variation, and consequently removes the requirement of complex electrical signal-processors in existing techniques of CD measurement. CD measurement for several fibers is experimentally demonstrated. Second, a novel temperature sensor that utilizes temperature dependence of reflection group-delay in a linearly chirped fiber Bragg grating is presented. The reflection group-delay of chirped grating changes with temperature leading to a variation in the phase of a SMOS reflected from the grating. A Kerr phase-interrogator converts the phase-variation into power variation allowing for temperature sensing with a resolution of 0.0089 oC and a sensitivity of 1.122 rad/oC. Third, a Kerr phase-interrogator is applied for implementation of real-time CD monitoring. CD induces a phase-shift between two SMOSs carried by two different wavelengths. A Kerr phase-interrogator converts the phase-shift into power variation and CD monitoring is achieved by measurement of the power variation in real time with a resolution of 0.196 ps/nm. This application takes advantages of ultrafast response of Kerr phase-interrogator and achieves the real-time monitoring. Lastly, a novel approach for incoherent optical frequency-domain reflectometry based on a Kerr phase-interrogator is presented. The novel approach eliminates the limitation of finite coherent length of the light source, and achieves measurement of long-range distance beyond the coherent length of the light source. Long-range detection of reflection points as far as 151 km at a spatial-resolution of 11.2 cm is experimentally demonstrated.
66

Ultrafast Nonlinear Spectrometer for Material Characterization

Negres, Raluca A. 01 January 2001 (has links) (PDF)
This work describes the use of a broadband spectral source for nonlinear spectroscopy to characterize various materials with potential applications in confocal microscopy, biological sample markers, optical limiting devices and optical switches. The goal is to study the spectrum of nonlinear absorption and the dispersion of nonlinear refraction as well as the dynamics of the nonlinearities by means of femtosecond excite-­probe experiments. The principle is quite simple: if a sample is under the influence of a strong fs excitation pulse and a pro be pulse beam is incident at the same time, or shortly after (within the decay time of the nonlinearity), then the probe pulse will sense the nonlinearity induced by the excitation. If the probe pulse is broadband, a femtosecond white-light continuum (WLC) in our case, we can monitor the nonlinearity induced over the entire continuum spectrum in one laser "shot". The use of femtosecond laser pulses to generate WLC will provide femtosecond time resolution for time-resolved spectroscopy. We built the nonlinear spectrometer and allowed for many degrees of flexibility in terms of choice of wavelengths for pump and probe beams and a dual detection system to cover both visible and infrared spectral ranges. We have the possibility of performing broad band spectral measurements using a spectrometer or selected narrow bandwidth probes incident on Si or Ge photodiodes for improved S/N ratios. The intrinsic properties of the continuum probe demand a careful characterization of its spatial and temporal profile. Know ledge of the dispersion of the index of refraction in various optical elements, including the sample itself, is also required for a correct analysis of the transient absorption raw data, especially for short time-scale dynamics of nonlinear processes. We tested the system using well-characterized semiconductor samples, and the results came out in excellent agreement with those from previous picosecond Z-scan measurements and theoretical modeling. With confidence, we can now measure various organic dyes with enhanced two-photon and excited-state absorption. Our setup is used to conduct a systematic study on similar compounds with modified molecular structures in order to learn about structure-property relations and draw guidelines for future design work.
67

Degenerate four wave mixing in semiconductor doped glass waveguides.

Gabel, Allan Harley. January 1988 (has links)
This dissertation begins with a study of some of the linear and nonlinear optical properties of composite materials consisting of CdSₓSe₁₋ₓ microcrystallites embedded in a host glass matrix. These studies investigate changes in absorption, refractive index and nonlinear response time under a variety of experimental conditions. The data demonstrates that this class of materials exhibit: a strong saturation of absorption due to band filling; a large n₂ which also saturates; response times which range from <100ps to many nanoseconds; and a permanent darkening and change of n₂ induced by extended exposure to high energy pulses. These measurements were used to identify the optimum sample of the semiconductor doped glasses to demonstrate an efficient degenerate four-wave mixing process within a planar waveguide. High quality single mode waveguides were fabricated from the semiconductor doped glass by K⁺-ion exchange. Four wave mixing was performed in the waveguide that produced a peak reflectivity of ≅.003, which is 8 orders of magnitude larger than that achieved previously in a similar experiment where CS₂ was used as the nonlinear medium.
68

TEMPERATURE DEPENDENCE OF NONLINEAR REFRACTION, AND NOVEL BISTABLE OPTICAL DEVICES IN INDIUM-ANTIMONIDE.

JAMESON, RALPH STEPHEN. January 1986 (has links)
This dissertation presents the results of experimental research on the nonlinear refraction in InSb and the experimental demonstration of two nonlinear etalon devices using InSb as the active material. The first portion of the dissertation considers the Dynamic Burstein-Moss Shift model for nonlinearities in narrow-gap semiconductors. The physics and the equations are reviewed, and limitations in describing intensity dependent refraction in a semiconductor are considered. These limitations arise from the nonlinear dependence of charge carrier density upon irradiance. The second portion of the dissertation presents experimental measurements made on the nonlinear refraction of InSb at temperatures between 80 K and 182 K, for wavelengths from 5.75 μm to 6.10 μm, where the photon energy lay in the band tail below 100 cm⁻¹. Measurements of the linear absorption were first made with an infrared spectrometer for temperatures from 80 K to 300 K. The nonlinearity was measured by analyzing the transmission through InSb etalons. Nonlinear transmission curves were digitized and stored with an IBM PC-XT, then a curve fit was performed using the nonlinear refractive index as a fiting parameter. Observations are reported of increasing absorption, due in part to a thermal shift of the absorption edge. The second portion of the work presents the theory and demonstration of a bistable etalon using an edge-injected control beam. Plane-wave nonlinear etalon theory is used to describe the operation of such a device, illustrating the way in which switching and logic gate operation can be obtained. Two devices based on this concept are demonstrated: the 3-port device using a single control beam, and the 2SON gate using two control beams to perform two-input logic operation. The extension of the 2SON gate to an array of pixels, and some considerations for optimizing array performance, are considered. Two appendices follow the body of the dissertation, the first describing the preparation of the InSb etalon samples, and the second detailing several procedures for maintenance and operation of the CO laser used.
69

ROOM-TEMPERATURE OPTICAL NONLINEARITIES IN GALLIUM-ARSENIDE AND FAST OPTICAL LOGIC GATES.

LEE, YONG HEE. January 1986 (has links)
This dissertation studies the physics of room-temperature optical nonlinearities in GaAs and their application to the optical logic gates. The microscopic origins of the room-temperature optical nonlinearities in GaAs are investigated experimentally and theoretically. The data of nonlinear absorption measurement are analyzed in the framework of a semiconductor plasma theory in combination with excitation-dependent line broadening. The importance of the plasma screening of the continuum-state Coulomb enhancement and band filling are emphasized for GaAs at room temperature. Optical bistability and optical logic gating are direct consequences of the nonlinear refractive index changes in etalons. The nonlinear index changes are directly measured by a new technique of observing the Fabry-Perot transmission peak shift using the self-photoluminescence as a broad-band source. The validity of a Kramers-Kronig technique under quasi-steady state conditions is crosschecked by an independent measurement of Δn under identical pumping conditions. Thermal index changes are also directly measured to establish the criteria on the temperature stability condition that is needed for reliable operation of devices based on dispersive nonlinearities. Optical logic gates based on dispersive optical nonlinearities may be the critical components of an all-optical computer in the future. Five optical logic functions are demonstrated in a nonlinear GaAs/AlGaAs MQW etalon. Specially designed dielectric mirrors are used to observe low-energy (3-pJ) operation of optical logic gates. Parallel operation using as many as eight optical logic devices is achieved with Wollaston prisms. Toward practical devices, optical logic gating using diode lasers is demonstrated in a setup much smaller than the usual argon-laser pumped dye laser setup. The cycle time of optical logic devices is limited, not by the switch-on time, but by the switch-off time which depends on the carrier relaxation rather than the switch-on time. To reduce the carrier relaxation time windowless GaAs is employed to take advantage of the faster surface recombination of carriers at the GaAs/dielectric mirror interface compared to that at the GaAs/GaAlAs interface. The speed and effectiveness of the windowless GaAs are compared with those of the proton-bombarded GaAs as optical logic gates.
70

NONLINEAR OPTICAL PHENOMENA IN ZINC OXIDE WAVEGUIDES (INTEGRATED OPTICS, NONLINEAR COUPLING).

FORTENBERRY, RANCE MORGAN. January 1986 (has links)
This dissertation reports on the development of a nonlinear surface spectroscopy and the observation of nonlinear optical phenomena using sputtered zinc oxide waveguides. The first is known as Surface Coherent Raman Spectroscopy, or SCRS, and is capable of monolayer sensitivity. The second, discovered during the development of SCRS, is optical limiting and a previously unobserved form of optical switching based on an absorptive nonlinear coupling mechanism. Overviews of the theories of waveguiding, linear coupling, and SCRS are given. Experiments showing that the spectrum of a monolayer coverage of molecules on the surface of a metal oxide waveguide can be obtained using SCRS are reported. For this purpose ZnO waveguides were fabricated using rf magnetron sputtering; the details of which are presented. The results of the characterization of these films, using an optical loss technique, Rutherford backscattering, and X-ray diffraction, are also presented. Experiments are described and data are presented to show the existence of optical limiting and optical switching phenomena in ZnO waveguides. The experimental dependence of these phenomena on input pulse energy, wavelength, temporal pulse width, and type of distributed coupling mechanism is described. Existing nonlinear distributed coupler theory is extended to include the effect of an absorptive nonlinearity and the results of this theory are used to explain some of the characteristic features of the experimental results. A value of n₂ ≅ 2 x 10⁻¹⁶ m²/W for the nonlinear coefficient of sputtered ZnO films is obtained.

Page generated in 0.084 seconds