• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TOWARD QUANTUM NETWORKING WITH FREQUENCY-BIN QUDITS ON INTEGRATED PLATFORMS

Karthik Vijay Annur Myilswamy (19797960) 03 October 2024 (has links)
<p dir="ltr">Quantum networking holds tremendous promise in transforming computation and communication. While matter-based systems excel as memory nodes, photons are ideal for long-distance transmission. Hence, a hybrid network combining both becomes essential. Moreover, developing entangled photon pair sources is critical for quantum repeaters and network implementation. The realization of these capabilities on integrated photonic circuits is vital for miniaturization and scalability. In this dissertation, we focus on two key aspects: establishing efficient photon-to-memory interfaces and generating and manipulating entangled states within integrated platforms.</p><p dir="ltr">One research direction involves developing an efficient interface between photons and matter-based memory, requiring spectral and temporal mode matching. Spectral compression is inevitable to realize low-loss interconnection between intrinsically narrowband memories and broadband photons. We proposed a novel approach using electro-optic time-varying cavities for spectral compression. Currently, we are working toward realizing this approach on the thin film lithium niobate platform.</p><p dir="ltr">In the other research focus, we encode quantum information as a coherent superposition of multiple optical frequencies; this approach is favorable due to its simplicity in generating high-dimensional entanglement and compatibility with fiber transmission. We successfully generated and reconstructed the density matrix of biphoton frequency combs from integrated silicon nitride microrings, achieving an 8x8 two-qudit dimensionality, the highest to date for frequency-bin qudits. Moreover, we employ Vernier electro-optic phase modulation methods to perform time-resolved measurements of biphoton correlation functions. Currently, we are exploring bidirectional pumping of microrings to generate indistinguishable entangled pairs in both directions, aiming to demonstrate key networking operations such as entanglement swapping and GHZ state generation in the frequency domain. We are also pursuing bidirectional pumping in a Sagnac configuration to generate simultaneous entanglement in both polarization and frequency, with the goal of deployment in a wavelength-multiplexed</p><p dir="ltr">network.</p>

Page generated in 0.1011 seconds