• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cure Rate Model with Spline Estimated Components

Wang, Lu 30 July 2010 (has links)
In some survival analysis of medical studies, there are often long term survivors who can be considered as permanently cured. The goals in these studies are to estimate the cure probability of the whole population and the hazard rate of the noncured subpopulation. The existing methods for cure rate models have been limited to parametric and semiparametric models. More specifically, the hazard function part is estimated by parametric or semiparametric model where the effect of covariate takes a parametric form. And the cure rate part is often estimated by a parametric logistic regression model. We introduce a non-parametric model employing smoothing splines. It provides non-parametric smooth estimates for both hazard function and cure rate. By introducing a latent cure status variable, we implement the method using a smooth EM algorithm. Louis' formula for covariance estimation in an EM algorithm is generalized to yield point-wise confidence intervals for both functions. A simple model selection procedure based on the Kullback-Leibler geometry is derived for the proposed cure rate model. Numerical studies demonstrate excellent performance of the proposed method in estimation, inference and model selection. The application of the method is illustrated by the analysis of a melanoma study. / Ph. D.
2

Nonparametric Covariance Estimation for Longitudinal Data

Blake, Tayler Ann, Blake 25 October 2018 (has links)
No description available.
3

Choosing a Kernel for Cross-Validation

Savchuk, Olga 14 January 2010 (has links)
The statistical properties of cross-validation bandwidths can be improved by choosing an appropriate kernel, which is different from the kernels traditionally used for cross- validation purposes. In the light of this idea, we developed two new methods of bandwidth selection termed: Indirect cross-validation and Robust one-sided cross- validation. The kernels used in the Indirect cross-validation method yield an improvement in the relative bandwidth rate to n^1=4, which is substantially better than the n^1=10 rate of the least squares cross-validation method. The robust kernels used in the Robust one-sided cross-validation method eliminate the bandwidth bias for the case of regression functions with discontinuous derivatives.
4

Cure Rate Models with Nonparametric Form of Covariate Effects

Chen, Tianlei 02 June 2015 (has links)
This thesis focuses on development of spline-based hazard estimation models for cure rate data. Such data can be found in survival studies with long term survivors. Consequently, the population consists of the susceptible and non-susceptible sub-populations with the latter termed as "cured". The modeling of both the cure probability and the hazard function of the susceptible sub-population is of practical interest. Here we propose two smoothing-splines based models falling respectively into the popular classes of two component mixture cure rate models and promotion time cure rate models. Under the framework of two component mixture cure rate model, Wang, Du and Liang (2012) have developed a nonparametric model where the covariate effects on both the cure probability and the hazard component are estimated by smoothing splines. Our first development falls under the same framework but estimates the hazard component based on the accelerated failure time model, instead of the proportional hazards model in Wang, Du and Liang (2012). Our new model has better interpretation in practice. The promotion time cure rate model, motivated from a simplified biological interpretation of cancer metastasis, was first proposed only a few decades ago. Nonetheless, it has quickly become a competitor to the mixture models. Our second development aims to provide a nonparametric alternative to the existing parametric or semiparametric promotion time models. / Ph. D.

Page generated in 0.1808 seconds