• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A counterexample concerning nontangential convergence for the solution to the time-dependent Schrödinger equation

Johansson, Karoline January 2007 (has links)
<p>Abstract: Considering the Schrödinger equation $\Delta_x u = i\partial{u}/\partial{t}$, we have a solution $u$ on the form $$u(x, t)= (2\pi)^{-n} \int_{\RR} {e^{i x\cdot \xi}e^{it|\xi|^2}\widehat{f}(\xi)}\, d \xi, x \in \RR, t \in \mathbf{R}$$ where $f$ belongs to the Sobolev space. It was shown by Sjögren and Sjölin, that assuming $\gamma : \mathbf{R}_+ \rightarrow \mathbf{R}_+ $ being a strictly increasing function, with $\gamma(0) = 0$ and $u$ and $f$ as above, there exists an $f \in H^{n/2} (\RR)$ such that $u$ is continuous in $\{ (x, t); t>0 \}$ and $$\limsup_{(y,t)\rightarrow (x,0),|y-x|<\gamma (t), t>0} |u(y,t)|= + \infty$$ for all $x \in \RR$. This theorem was proved by choosing $$\widehat{f}(\xi )=\widehat{f_a}(\xi )= | \xi | ^{-n} (\log | \xi |)^{-3/4} \sum_{j=1}^{\infty} \chi _j(\xi)e^{- i( x_{n_j} \cdot \xi + t_j | \xi | ^a)}, \, a=2,$$ where $\chi_j$ is the characteristic function of shells $S_j$ with the inner radius rapidly increasing with respect to $j$. The purpose of this essay is to explain the proof given by Sjögren and Sjölin, by first showing that the theorem is true for $\gamma (t)=t$, and to investigate the result when we use $$S^a f_a (x, t)= (2 \pi)^{-n}\int_{\RR} {e^{i x\cdot \xi}e^{it |\xi|^a}\widehat{f_a}(\xi)}\, d \xi$$ instead of $u$.</p>
2

A counterexample concerning nontangential convergence for the solution to the time-dependent Schrödinger equation

Johansson, Karoline January 2007 (has links)
Abstract: Considering the Schrödinger equation $\Delta_x u = i\partial{u}/\partial{t}$, we have a solution $u$ on the form $$u(x, t)= (2\pi)^{-n} \int_{\RR} {e^{i x\cdot \xi}e^{it|\xi|^2}\widehat{f}(\xi)}\, d \xi, x \in \RR, t \in \mathbf{R}$$ where $f$ belongs to the Sobolev space. It was shown by Sjögren and Sjölin, that assuming $\gamma : \mathbf{R}_+ \rightarrow \mathbf{R}_+ $ being a strictly increasing function, with $\gamma(0) = 0$ and $u$ and $f$ as above, there exists an $f \in H^{n/2} (\RR)$ such that $u$ is continuous in $\{ (x, t); t&gt;0 \}$ and $$\limsup_{(y,t)\rightarrow (x,0),|y-x|&lt;\gamma (t), t&gt;0} |u(y,t)|= + \infty$$ for all $x \in \RR$. This theorem was proved by choosing $$\widehat{f}(\xi )=\widehat{f_a}(\xi )= | \xi | ^{-n} (\log | \xi |)^{-3/4} \sum_{j=1}^{\infty} \chi _j(\xi)e^{- i( x_{n_j} \cdot \xi + t_j | \xi | ^a)}, \, a=2,$$ where $\chi_j$ is the characteristic function of shells $S_j$ with the inner radius rapidly increasing with respect to $j$. The purpose of this essay is to explain the proof given by Sjögren and Sjölin, by first showing that the theorem is true for $\gamma (t)=t$, and to investigate the result when we use $$S^a f_a (x, t)= (2 \pi)^{-n}\int_{\RR} {e^{i x\cdot \xi}e^{it |\xi|^a}\widehat{f_a}(\xi)}\, d \xi$$ instead of $u$.

Page generated in 0.1308 seconds