• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NICOTINIC RECEPTOR MODULATION OF DOPAMINE TRANSPORTERS

Middleton, Lisa Sue 01 January 2006 (has links)
The current project examined the ability of nicotine to modulate dopamine transporter (DAT) function. Initial experiments determined the dose-response for nicotine to modulate dopamine (DA) clearance in rat striatum and medial prefrontal cortex (MPFC) using in vivo voltammetry and determined if this effect was mediated by nicotinic receptors (nAChRs). In both striatum and MPFC, nicotine increased DA clearance in a mecamylamine-sensitive manner, indicating nAChR-mediation. The effect of acute nornicotine on DAT function was also determined. In contrast to nicotine, nornicotine in a dose-related manner decreased striatal DA clearance in a mecamylamine-sensitive manner, indicating nAChR mediation. To determine if tolerance developed to the nicotine effect nicotine, separate groups of rats were injected once daily for 5 days with nicotine or saline. DA clearance in striatum and MPFC was determined 24 hrs after the last injection. Nicotine increased DA clearance only 10-15% in the group repeatedly administered nicotine, demonstrating that tolerance developed. To determine if nicotine altered striatal DAT efficiency, following nicotine injection, DAT density and maximal velocity of [3H]DA uptake was determined using [3H]GBR12935 binding and saturation analysis of [3H]DA uptake in rat striatum, respectively. Nicotine did not alter the Bmax or Kd of maximal binding of [3H]GBR12935 binding. However, an increase in Vmax was observed at 10 and 40 min following nicotine injection, suggesting that nicotine increases DAT efficiency. To determine if systemic nicotine enhanced DAT function via an action at nAChRs on striatal DA terminals, [3H]DA uptake was determined in striatum in vitro in the absence or presence of nicotine in the buffer. Nicotine did not alter the Vmax for [3H]DA uptake in vitro, suggesting that the nicotine-induced increase in DAT function observed in vivo is mediated by nAChRs on DA cell bodies or another site which indirectly alters DAT function. To determine if the increase in DAT efficiency was due to increased surface expression of striatal DAT, biotinylation and Western blot analyses were performed. Nicotine did not alter striatal DAT, suggesting that the nicotine-induced increase in DA clearance in vivo and DAT efficiency in vitro is not the result of increased trafficking of this protein to the cell surface.
2

EVOLUTIONARY PERSPECTIVE OF NICOTINE TO NORNICOTINE CONVERSION, ITS REGULATION AND CHARACTERIZATION OF EIN2 MEDIATED ETHYLENE SIGNALING IN TOBACCO

Chakrabarti, Manohar 01 January 2010 (has links)
Nicotine, nornicotine, anabasine and anatabine are four major alkaloids in tobacco, of which nicotine is predominant. In many tobacco cultivars and also in other Nicotiana species, nicotine is converted to nornicotine, which in turn gives rise to potent carcinogen NNN. Nicotine to nornicotine conversion via nicotine-N-demethylation is mediated by the CYP82E family of P450 enzymes. Tobacco (Nicotiana tabacum) converts in senescing leaves, while its diploid progenitors N.tomentosiformis and N.sylvestris convert in both green and senescing and only in senescing leaves, respectively. Previously it has been shown that N.tomentosiformis has different active conversion loci in green and senescing leaves. The green leaf conversion enzyme CYP82E3 is inactivated in tobacco by a single amino acid substitution, while the senescing leaf converter enzyme CYP82E4 is active in tobacco, which gave tobacco a ‘senescing leaf converter’ phenotype. In nonconverter tobacco, CYP82E4 shows transcriptional silencing. The nicotine-N-demethylase gene NsylCYP82E2 involved in nicotine to nornicotine conversion in senesced leaves of N. sylvestris was isolated. NsylCYP82E2 is active in N. sylvestris, but it has become inactivated in tobacco through mutations causing two amino acid substitutions. The conversion factor from N.sylvestris was characterized and a model for the alkaloid profile evolution in the amphidiploid N.tabacum from its diploid progenitors was proposed. Regulation of conversion phenomenon was tested under different spatio-temporal conditions and various stresses. The promoter region for NtabCYP82E4 was isolated and promoter-reporter construct was used to determine that NtabCYP82E4 is specifically induced only during senescence. This pattern correlates with the nornicotine accumulation as measured by alkaloid profiling. Thus the regulatory regions of NtabCYP82E4 represent a senescence specific promoter. In another project functional characterization of tobacco EIN2 (NtabEIN2) was undertaken. EIN2 from tobacco and N.sylvestris were cloned, their genomic structure was deduced and NtabEIN2 was silenced using RNAi approach. Silenced plants showed significant delay in petal senescence and abscission; as well as anther dehiscence, pod maturation, pod size, seed yield and defense against tobacco hornworm. Mechanism of delayed petal senescence phenotype, including possible cross-talk with Auxin Response Factor 2 and potential involvement of tasiRNA3 were also investigated.
3

ENANTIOSELECTIVE DEMETHYLATION: THE KEY TO THE NORNICOTINE ENANTIOMERIC COMPOSITION IN TOBACCO LEAF

Cai, Bin 01 January 2012 (has links)
Nicotine and nornicotine are the two main alkaloids that accumulate in Nicotiana tabacum L. (tobacco), and nornicotine is the N-demethylation metabolite of nicotine. Nicotine is synthesized in the root, and probably primarily in the root tip. Both nicotine and nornicotine exist as two isomers that differ from each other by the orientation of H atom at the C-2' position on the pyrrolidine ring. (S)-nicotine is the dominant form in tobacco leaf and the enantiomer fraction of nicotine (EFnic), the fraction of (R)-enantiomer over the total nicotine, is approximately 0.002. Despite considerable efforts to elucidate nicotine and nornicotine related metabolism, a comprehensive understanding of the factors responsible for regulating the variable EF for nornicotine (0.04 to 0.75 ) relative to nicotine has been lacking. The objectives of these investigations were to understand the mechanisms behind the discrepancy. There are three nicotine demethylases reported to be active in tobacco. In vitro recombinant CYP82E4, CYP82E5v2 and CYP82E10 demethylated (R)-nicotine three, ten and ten-fold faster than (S)-nicotine, respectively, and no racemization was observed in either nicotine or nornicotine during demethylation. To confirm these in vitro results, the accumulation and demethylation of nicotine enantiomers throughout the growth cycle and curing process were investigated. Scion stock grafts were used to separate the contributions of roots (source) from leaves (sink) to the final accumulation of nicotine and nornicotine in leaf. The results indicate that nicotine consists of 4% of the R enantiomer (0.04 EFnic) when synthesized. However, (R)-nicotine is selectively demethylated by CYP82E4, CYP82E5 and CYP82E10, resulting in an approximate 0.01 EFnic and 0.60 EFnnic in the root. After most of (R)-nicotine is demethylated in root, nicotine and nornicotine are translocated to leaf, where nicotine is further demethylated. Depending on the CYP82E4 activity, an EFnnic of 0.04 to 0.60 is produced and only 0.2% of the remaining nicotine in the leaf is (R)-configuration.

Page generated in 0.058 seconds