• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrastructural Studies of Spermatogenesis in Anthocerotophyta v. Nuclear Metamorphosis and the Posterior Mitochondrion of Notothylas Orbicularis and Phaeoceros laevis

Renzaglia, Karen S., Duckett, J. G. 01 June 1989 (has links)
Ultrastructural observations reveal that the spermatozoids of the hornworts Notothylas and Phaeoceros contain two mitochondria and not one as described previously. Mitochondrial ontogeny and nuclear metamorphosis during spermiogenesis in these plants differ from all other archegoniates. The discovery that the posterior region of the coiled nucleus (when viewed from the anterior aspect) lies to the left of the anterior, in striking contrast to the dextral coiling of the nucleus of spermatozoids of other embryophytes, underlines the isolated nature of the hornworts among land plants. As the blepharoplast develops, the numerous ovoid mitochondria initially present in the nascent spermatid fuse to form a single elongated organelle which is positioned subjacent to the MLS and extends down between the nucleus and plastid. At the onset of nuclear metamorphosis, the solitary mitochondrion has separated into a larger anterior mitochondrion (AM) associated with the MLS and a much smaller posterior mitochondrion (PM) adjacent to the plastid. The PM retains its association with the plastid and both organelles migrate around the periphery of the cell as the spline MTs elongate. By contrast, in moss spermatids, where mitochondria undergo similar fusion and division, the AM is approximately the same size as the PM and the latter is never associated with the spline. As in other archegoniates, except mosses, spline elongation precedes nuclear metamorphosis in hornworts. Irregular strands of condensed chromatin compact basipetally to produce an elongated cylindrical nucleus which is narrower in its mid-region. During this process excess nucleoplasm moves rearward. It eventually overarches the inner surface of the plastid and entirely covers the PM.

Page generated in 0.0455 seconds