• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Density Functional Theory Study of Hydrogen Transfer and Rotational Barriers in Vitamin E-like Molecules

Aurlien, Ragnhild January 2011 (has links)
A study of the antioxidant property of two vitamin E simplifications with density functional theory has been done. In one of the simplifications the phytyl tail and the methyl group on the heterocyclic ring in vitamin E is replaced by two hydrogen atoms, simplification A. In the other simplification the heterocyclic ring is replaced by two hydrogen atoms, simplification B. Three main investigations have been done; rotation of the hydroxyl group on the different isoforms of the two simplifications, hydrogen transfers from the alpha-isoform of the simplifications to three different radicals •OOH, •OOCH3, and •OOC2H5, and a rotation of the hydroxyl group with a hydrogen bond to •OOH and •OOCH3 for simplification B. The BLYP exchange correlation functional is found to underestimate hydrogen transfer energy barriers, which is improved with the B3LYP functional. This problem did not occur for the rotation of the hydroxyl group. The energy barriers for the rotation of the hydroxyl group is found to be smallest for the alpha-isoform, and simplification A gives lower rotational barriers than simplification B. Simplification A also results in smaller energy barriers for hydrogen transfers. The hydrogen transfer to •OOC2H5 with the B3LYP functional resulted in hydrogen barriers of 0,411 eV for simplification B and 0,231 eV for simplification A. Thus simplification B is found to be less reactive than simplification A, which is explained by the electron donating property of the heterocyclic ring not included in simplification B. Since simplification B is less reactive than simplification A, it is concluded to be a poorer antioxidant than simplification A, and a poor model for vitamin E.

Page generated in 0.01 seconds