• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear Laser-induced Deformations and Forces at Liquid-Liquid Interfaces near the critical Point.

Aanensen, Nina Sasaki January 2011 (has links)
The theory of laser-induced liquid-liquid interface deformation has been presented and used to derive a differential equation describing the shape of the deformation. The differential equation has been investigated and solved numerically, and the results have been compared to the experimental results of the Bordeaux group. A model describing the maximum depth of the deformation based on the theory of a sphere in an electric field has also been investigated.The deformations from the numerical solutions of the differential equation are too wide compared to the experimental results. The shoulder-shape that has been observed in the experiments is not present in the numerical solutions. There is reason to believe that the differential equation may be too simple in order to describe the liquid-liquid interface deformation for nonlinear cases. There may be thermal effects that changes the liquid properties due to local temperature variations induced by the laser, causing the liquid parameters to change along the deformation.The model used to estimate the deformation depth does not give reasonable results, as it leads to a deformation that is more than 100 times larger than what is observed in the corresponding experiments. The assumptions made for this model may not be valid, and a discussion on what should be done in order to improve the model is included in this text.

Page generated in 0.0083 seconds