• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

LED light source for hyperspectral fluorescence imaging

Tendenes, Nils Ove January 2012 (has links)
This report deals with the possibility of creating a LED light source, to be used withhyperspectral fluorescence imaging. There are commercially available light sources thatcould be used, but they are expensive, they do not necessarily emit the right wavelength, the uniformity of the field is questionable and they are difficult to modify.First a batch of Light emitting diodes were acquired, these were subjected to a seriesof tests to classify their limitations and determine which diodes were to be included in the final light source. A spectrometer was used to determine the emitted wavelength of each diode and which scenarios could change the wavelength of the emitted light. Aphotodiode was used to acquire the viewing angle of the LEDs and their relative radiantpower. Images gathered by a hyperspectral camera were used to determine the relevancyof noise produced by the current source. When the light emitting diodes were chosen,the photodiode was used to make an image of the light field. The final light source wasmounted on the hyperspectral camera to gather fluorescent images.The final tests revealed a fully functional light source with potential to be used on aregular basis, but the current source was too cumbersome and the field was not optimal.These are issues that can be dealt with and this light source can in the future provide a cheap and easily modifiable light source alternative.

Page generated in 0.0151 seconds