• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Overexpression of Angiopoietin-1 Reduces Doxorubicin-Induced Apoptosis in Cardiomyocytes

Ren, Danyang, Zhu, Quan, Li, Jiantao, Ha, Tuanzhu, Wang, Xiaohui, Li, Yuehua 01 November 2012 (has links)
Doxorubicin (Dox) is a major anticancer chemotherapeutic agent. However, it causes cardiomyopathy due to the side effect of cardiomyocyte apoptosis. We have previously reported that angiopoietin-1 significantly reduced myocardial infarction after ischemic injury and protected cardiomyocytes from oxidative stress-induced apoptosis. It is hypothesized that angiopoietin-1 may protect cardiomyocytes from Dox-induced apoptosis. Cardiomyocytes H9C2 were transfected with adenovirus expressing angiopoietin-1 (Ad5-Ang-1) 24 h before the cells were challenged with Dox at a concentration of 2 μmol/L. Ad5-GFP served as the vector control. Cardiomyocyte apoptosis was evaluated using Annexin V-FITC staining and caspase-3 and caspase-8 activity was determined by Western blotting. The results showed that Dox treatment significantly induced cardiomyocyte apoptosis as evidenced by the greater number of Annexin V-FITC stained cells and increases in caspase-3 and caspase-8 activity. In contrast, overexpression of angiopoietin-1 significantly prevented Dox-induced cardiomyocyte apoptosis. To elucidate the mechanisms by which angiopoietin-1 protected cells from Dox-induced apoptosis, we analyzed both extrinsic and intrinsic apoptotic signaling pathways. We observed that angiopoietin-1 prevented Dox-induced activation of both extrinsic and intrinsic apoptotic signaling pathways. Specifically, angiopoietin-1 prevented DOX-induced in-creases in FasL and Bax levels and cleaved caspase-3 and caspase-8 levels in H9C2 cells. In addition, overexpression of angiopoietin-1 also activated the pro-survival phosphoinositide-3 kinase (PI3K)/Akt signaling pathway and decreased Dox-induced nuclear factor-kappaB (NF-κB) activation. Our data suggest that promoting the expression of angiopoietin-1 could be a potential approach for reducing Dox-induced cardiomyocyte cytoxicity.

Page generated in 0.0405 seconds