• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Climate Change Impacts on the Molecular-level Carbon Biogeochemistry in Arctic Ecosystems

Pautler, Brent Gregory 27 July 2010 (has links)
The goal of this thesis was to characterize and quantify changes to Canadian Arctic organic matter (OM) induced by a physical disruption to the permafrost active layer by employing molecular-level techniques such as biomarker extraction and NMR to help elucidate its contribution to carbon turnover and global climate change. The initial biomarker characterization study determined that the extractable plant lipids were unaltered originating from the deposition of new vascular material or permafrost melt where a high alteration of lignin-derived OM was observed suggesting a long residence time in the ecosystem. Analysis of samples where there was a new and historical physical disruption to the permafrost landscape showed an initial increase in bacterial biomass biomarkers, and was corroborated with increased bacterial protein contributions and peptidoglycan signals in the NMR spectra. It is hypothesized that this increase in bacterial biomass resulted in a faster rate of degradation, possibly leading to OM priming.
2

Climate Change Impacts on the Molecular-level Carbon Biogeochemistry in Arctic Ecosystems

Pautler, Brent Gregory 27 July 2010 (has links)
The goal of this thesis was to characterize and quantify changes to Canadian Arctic organic matter (OM) induced by a physical disruption to the permafrost active layer by employing molecular-level techniques such as biomarker extraction and NMR to help elucidate its contribution to carbon turnover and global climate change. The initial biomarker characterization study determined that the extractable plant lipids were unaltered originating from the deposition of new vascular material or permafrost melt where a high alteration of lignin-derived OM was observed suggesting a long residence time in the ecosystem. Analysis of samples where there was a new and historical physical disruption to the permafrost landscape showed an initial increase in bacterial biomass biomarkers, and was corroborated with increased bacterial protein contributions and peptidoglycan signals in the NMR spectra. It is hypothesized that this increase in bacterial biomass resulted in a faster rate of degradation, possibly leading to OM priming.

Page generated in 0.0986 seconds