• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Accelerated Sepsis Diagnosis by Seamless Integration of Nucleic Acid Purification and Detection

Hsu, Bang-Ning January 2014 (has links)
<p><bold>Background</bold> The diagnosis of sepsis is challenging because the infection can be caused by more than 50 species of pathogens that might exist in the bloodstream in very low concentrations, e.g., less than 1 colony-forming unit/ml. As a result, among the current sepsis diagnostic methods there is an unsatisfactory trade-off between the assay time and the specificity of the derived diagnostic information. Although the present qPCR-based test is more specific than biomarker detection and faster than culturing, its 6 ~ 10 hr turnaround remains suboptimal relative to the 7.6%/hr rapid deterioration of the survival rate, and the 3 hr hands-on time is labor-intensive. To address these issues, this work aims to utilize the advances in microfluidic technologies to expedite and automate the ``nucleic acid purification - qPCR sequence detection'' workflow.</p><p><bold>Methods and Results</bold> This task is evaluated to be best approached by combining immiscible phase filtration (IPF) and digital microfluidic droplet actuation (DM) on a fluidic device. In IPF, as nucleic acid-bound magnetic beads are transported from an aqueous phase to an immiscible phase, the carryover of aqueous contaminants is minimized by the high interfacial tension. Thus, unlike a conventional bead-based assay, the necessary degree of purification can be attained in a few wash steps. After IPF reduces the sample volume from a milliliter-sized lysate to a microliter-sized eluent, DM can be used to automatically prepare the PCR mixture. This begins with compartmenting the eluent in accordance with the desired number of multiplex qPCR reactions, and then transporting droplets of the PCR reagents to mix with the eluent droplets. Under the outlined approach, the IPF - DM integration should lead to a notably reduced turnaround and a hands-free ``lysate-to-answer'' operation.</p><p>As the first step towards such a diagnostic device, the primary objective of this thesis is to verify the feasibility of the IPF - DM integration. This is achieved in four phases. First, the suitable assays, fluidic device, and auxiliary systems are developed. Second, the extent of purification obtained per IPF wash, and hence the number of washes needed for uninhibited qPCR, are estimated via off-chip UV absorbance measurement and on-chip qPCR. Third, the performance of on-chip qPCR, particularly the copy number - threshold cycle correlation, is characterized. Lastly, the above developments accumulate to an experiment that includes the following on-chip steps: DNA purification by IPF, PCR mixture preparation via DM, and target quantification using qPCR - thereby demonstrating the core procedures in the proposed approach.</p><p><bold>Conclusions</bold> It is proposed to expedite and automate qPCR-based multiplex sparse pathogen detection by combining IPF and DM on a fluidic device. As a start, this work demonstrated the feasibility of the IPF - DM integration. However, a more thermally robust device structure will be needed for later quantitative investigations, e.g., improving the bead - buffer mixing. Importantly, evidences indicate that future iterations of the IPF - DM fluidic device could reduce the sample-to-answer time by 75% to 1.5 hr and decrease the hands-on time by 90% to approximately 20 min.</p> / Dissertation
2

Method development of magnetic cell isolation and DNA extraction of small cell populations from Ficoll-separated hematopoietic cells

Debowska, Dominika January 2023 (has links)
Clonal haematopoiesis of indeterminate potential, or CHIP are a family of mutations present in the general population. CHIP-mutations are prevalent in the haematopoietic stem cells and in the more mature cell populations, T-lymphocytes, B-lymphocytes and myeloid cells (CD3+, CD19+ and CD33+ cells) in blood. By separating these cell populations using magnetic isolation, extracting DNA from the cell populations, and detecting the same mutation in all cell populations, one can prove the presence of CHIP-mutations in a hematopoietic stem cell. At least 50 ng good quality DNA is needed for the gene analysis to detect CHIP-mutations. The magnet separated cell population may be very small, so the DNA extraction method must be optimized to achieve enough DNA yield. The main purpose of the method development was to compare two storage methods before DNA-extractions, and then three different DNA-quantification methods after the DNA-extractions. After the best storage and quantification methods were identified, five samples of cryo-preserved viable cells were used to isolate cell populations using magnetic beads covered in specific antibodies and a magnetic field, and then quantified. Results of the study showed that the best way was to store the cells in ATL-buffer and Proteinase K. To quantify DNA, qPCR was the most accurate method, since the other methods showed incorrect results because of the low DNA concentrations. Magnet cell separation was partly successful. All except one of the DNA yields from the cell separation protocols reached the critical amount of DNA, but some yields were not pure yields of the sought-after cell population. In general, the method must be worked on more with further research.

Page generated in 0.0974 seconds