• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gas-Phase Studies of Nucleophilic Substitution Reactions: Halogenating and Dehalogenating Aromatic Heterocycles

Donham, Leah L 01 January 2018 (has links)
Halogenated heterocycles are common in pharmaceutical and natural products and there is a need to develop a better understanding of processes used to synthesize them. Although the halogenation of simple aromatic molecules is well understood, the mechanisms behind the halogenation of aromatic heterocycles have been more problematic to elucidate because multiple pathways are possible. Recently, new, radical-based mechanisms have been proposed for heterocycle halogenation. In this study, we examine and test the viability of possible nucleophilic substitution, SN2@X, mechanisms in the halogenation of anions derived from the deprotonation of aromatic heterocycles. All the experiments were done in a modified Thermo LCQ Plus equipped with ESI. The modifications allow a neutral reagent to be added to the helium buffer gas in the 3D ion trap. In this system, it is possible to monitor ion/molecule reactions over time periods up to 10 seconds. A variety of aromatic heterocyclic nucleophiles were chosen based on their inclusion of nitrogen and or sulfur as the heteroatoms. In addition to this, the halogenating molecules chosen included traditional halobenzenes and a new class of perfluorinated alkyl iodides. It was found that, experimentally, the SN2@X path is the likely mechanism in the halogenation of deprotonated heterocycles. With computational modeling, we have additional support for this substitution mechanism. From this original study, two more studies were developed to look at the competing nucleophilic aromatic substitution reaction, SNAr. In the first of these studies, the focus was to look at how electron withdrawing substituents about an aromatic ring affect the ratio of SN2@X verses SNAr. As nucleophiles, 2-thiophenide and 5-thiazolide were used. The neutral reagents focus on trifluorobromobenzene derivatives along with pentafluorobromo- and -iodobenzene, and a two trifluoroiodobenzenes. What was found was that the ratio of the reactions depends on where the fluorines, or electron withdrawing substituents are in relation to the bromine or iodine on the ring. If the fluorines are in a close location to stabilize the resulting ionic product, SN2@X proceeds easily. However, the fluorines directly adjacent to the bromine or iodine also provide steric hinderance in the SNAr reaction. In the final project, arylation and benzylation of bromopyridines was examined. The nucleophiles used were benzyl and phenyl anions as well as 5-thiazolide, and the neutral reagents were bromopyridines, with fluorines used as an electron withdrawing groups to help stabilize the transition state. In these experiments, steric hinderance highly affected the results between the phenyl and benzyl nucleophiles. With benzylic anions, the nucleophile is able to reach the aromatic ring with less steric interference and therefore can proceed with an SNAr reaction. In addition to this, with mono and difluorinated pyridine substrates, the nitrogen in the ring activated the ring yielding nucleophilic aromatic substitution losing fluoride rather than bromide in many cases.
2

Computational Studies of Chemical Interactions: Molecules, Surfaces and Copper Corrosion

Halldin Stenlid, Joakim January 2017 (has links)
The chemical bond – a corner stone in science and a prerequisite for life – is the focus of this thesis. Fundamental and applied aspects of chemical bonding are covered including the development of new computational methods for the characterization and rationalization of chemical interactions. The thesis also covers the study of corrosion of copper-based materials. The latter is motivated by the proposed use of copper as encapsulating material for spent nuclear fuel in Sweden. In close collaboration with experimental groups, state-of-the-art computational methods were employed for the study of chemistry at the atomic scale. First, oxidation of nanoparticulate copper was examined in anoxic aqueous media in order to better understand the copper-water thermodynamics in relation to the corrosion of copper material under oxygen free conditions. With a similar ambition, the water-cuprite interface was investigated with regards to its chemical composition and reactivity. This was compared to the behavior of methanol and hydrogen sulfide at the cuprite surface. An overall ambition during the development of computational methods for the analysis of chemical bonding was to bridge the gap between molecular and materials chemistry. Theory and results are thus presented and applied in both a molecular and a solid-state framework. A new property, the local electron attachment energy, for the characterization of a compound’s local electrophilicity was introduced. Together with the surface electrostatic potential, the new property predicts and rationalizes regioselectivity and trends of molecular reactions, and interactions on metal and oxide nanoparticles and extended surfaces. Detailed atomistic understanding of chemical processes is a prerequisite for the efficient development of chemistry. We therefore envisage that the results of this thesis will find widespread use in areas such as heterogeneous catalysis, drug discovery, and nanotechnology. / Den kemiska bindningen – en hörnsten inom naturvetenskapen och oumbärlig för allt liv – är det centrala temat i den här avhandlingen. Både grundläggande och tillämpade aspekter behandlas. Detta inkluderar utvecklingen av nya beräkningsmetoder för förståelse och karaktärisering av kemiska interaktioner. Dessutom behandlas korrosion av kopparbaserade material. Det sistnämnda är motiverat av förslaget att använda koppar som inkapslingsmaterial för hanteringen av kärnavfall i Sverige. Kvantkemiska beräkningsmetoder enligt state-of-the-art har använts för att studera kemi på atomnivå, detta i nära sammabete med experimentella grupper. Initialt studerades oxidation av kopparnanopartiklar under syrgasfria och vattenrika förhållanden. Detta för att bättre kartlägga koppar-vattensystemets termodynamik. Av samma orsak detaljstuderades även gränsskiktet mellan vatten och kuprit med fokus på dess kemiska sammansättning och reaktivitet. Resultaten har jämförts med metanols och vätesulfids kemiska beteende på ytan av kuprit. En övergripande målsättningen under arbetet med att utveckla nya beräkningsbaserade analysverktyg för kemiska bindningar har varit att överbrygga gapet mellan molekylär- och materialkemi. Därför presenteras teoretiska aspekter samt tillämpningar från både ett molekylärt samt ett fast-fas perspektiv. En ny deskriptor för karaktärisering av föreningars lokala elektrofilicitet har introducerats – den lokala elektronadditionsenergin. Tillsammans med den elektrostatiska potentialen uppvisar den nya deskriptorn förmåga att förutsäga samt förklara regioselektivitet och trender för molekylära reaktioner, och för interaktioner på metal- och oxidbaserade nanopartiklar och ytor. En detaljerad förståelse av kemiska processer på atomnivå är en nödvändighet för ett effektivt utvecklande av kemivetenskapen. Vi förutspår därför att resultaten från den här avhandlingen kommer att få omfattande användning inom områden som heterogen katalys, läkemedelsdesign och nanoteknologi. / <p>QC 20170829</p>

Page generated in 0.1781 seconds