1 |
Characterization of the soybean genome in regions surrounding two loci for resistance to soybean mosaic virusHayes, Alec J. 11 August 1998 (has links)
Soybean mosaic virus (SMV), has been the cause of numerous and often devastating disease epidemics, causing reduction in both the quality and quantity of soybeans worldwide. Two important genes for resistance to SMV are Rsv1 and Rsv4. Alleles at the Rsv1 locus have been shown to control resistance to all but the most virulent strain of SMV. This locus has been mapped previously to the soybean F linkage group. Rsv4 is an SMV resistance locus independent of Rsv1 and confers resistance to all strains of SMV. This locus has not been mapped previously. The purpose of this study is to investigate the two genomic regions that contain these vitally important resistance genes.
A population of 281 F2 individuals that had previously been genotyped for reaction to SMV was evaluated in a mapping study which combined bulk segregant analysis with Amplified Fragment Length Polymorphism (AFLP). A Rsv4-linked marker, R4-1, was identified that mapped to soybean linkage group D1b using a reference mapping population. More than 40 markers were mapped in the Rsv4 segregating population including eleven markers surrounding Rsv4. This will provide the necessary framework for the fine mapping of this important genetic locus.
Previous work has located Rsv1 to a genomic region containing several important resistance genes including Rps3, Rpg1, and Rpv. An RFLP probe, NBS5, whose sequence closely resembles that of several cloned plant disease resistance genes has been mapped to this chromosomal region. The efficacy of using this sequence to identify potential disease resistance genes was assessed by screening a cDNA library to uncover a candidate disease resistance gene which corresponds to this NBS5 sequence. Two related sequence classes were identified that correspond to NBS5. Interestingly, one class corresponds to a full length gene closely resembling other previously cloned disease resistance genes offering evidence that this NBS5-derived clone is a candidate disease resistance gene.
A new marker technique was developed by combining the speed and efficiency of AFLP with DNA sequence information from cloned disease resistance genes. Using this strategy, three new markers tightly linked to Rsv1 were identified. One of these markers, which maps 0.6 cM away from Rsv1, has motifs consistent with other cloned disease resistance genes, providing evidence that this approach is an efficient method for targeting genomic regions where disease resistance genes are located. / Ph. D.
|
2 |
Molecular cloning and characterisation of potential Fusarium resistance genes in banana (Musa acuminata ssp. Malaccensis)Echeverria, Santy Peraza January 2007 (has links)
Banana is the most important fruit crop in the world but ironically one of the crops least studied. This fruit constitutes a major staple food for millions of people in developing countries and also it is considered the highest selling fruit in the world market making this crop a very important export commodity for the producing countries. At the present time, one of the most significant constraints of banana production that causes significant economical losses are fungal diseases. Among these, Panama disease, also known as Fusarium wilt has been the most catastrophic. Panama disease is caused by the soil-borne fungus Fusarium oxysporum formae specialis (f.sp) cubense (FOC), which infects susceptible bananas through the roots causing a lethal vascular wilt. To date, the race 4 of this pathogen represents the most serious threat to banana production worldwide since most of the commercial cultivars are highly susceptible to this pathogen. Introduction of FOC resistance into commercial cultivars by conventional breeding has been difficult because edible bananas are sterile polyploids without seeds. Genetic transformation of banana, which has already been established in various laboratories around the world has the potential to solve this problem by transferring a FOC race 4 resistance gene into susceptible banana cultivars (eg. Cavendish cultivars). However, a FOC resistant (R) gene has not been isolated. Genes that confer resistance to Fusarium oxysporum have been isolated from tomato and melon using a map-based positional cloning approach. The tomato I2 and melon Fom-2 genes belong to the non-Toll/interleukin like receptors (TIR) subclass of nucleotide-binding site and leucine-rich repeat (NBS-LRR) R genes. These genes confer resistance only to certain races of F. oxysporum in their corresponding plant families limiting their use in other plant families. The fact that these two Fusarium resistance genes share the same basic non-TIR-NBS-LRR structure suggests a similar Fusarium resistance mechanism is shared between the families Solanaceae and Cucurbitaceae. This observation opens the possibility to find similar Fusarium resistance genes in other plant families including the Musaceae. A remarkable discovery of a population of the wild banana Musa acuminata subspecies (ssp.) malaccensis segregating for FOC race 4 resistance was made by Dr. Ivan Buddenhagen (University of California, Davis) in Southeast Asia. Research carried out at Queensland Department of Primary Industries (Australia) using this plant material has demonstrated that a single dominant gene is involved in FOC race 4 resistance (Dr. Mike Smith, unpublished results). Tissue-culture plantlets of this FOC race 4 segregating population were kindly provided to the Plant Biotechnology Program (Queensland University of Technology) by Dr. Mike Smith to be used in our research. This population holds the potential to assist in the isolation of a FOC race 4 resistance gene and other potential Fusarium resistance genes. The overall aims of this research were to isolate and characterise resistance gene candidates of the NBS-type from M. acuminata ssp. malaccensis and to identify and characterise potential Fusarium resistance genes using a combination of bioinformatics and gene expression analysis.
Chapter 4 describes the isolation by degenerate PCR of five different classes of NBS sequences from banana (Musa acuminata ssp malaccensis) designated as resistance gene candidates (RGCs). Deduced amino acid sequences of the RGCs revealed the typical motifs present in the majority of known plant NBS-LRR resistance genes. Structural and phylogenetic analyses showed that the banana RGCs are related to non-TIR subclass of NBS sequences. The copy number of each class was estimated by Southern hybridisation and each RGC was found to be in low copy number. The expression of the RGCs was assessed by RT-PCR in leaf and root tissues of plants resistant or susceptible to Fusarium oxysporum f. sp. cubense (FOC) race 4. Four classes showed a constitutive expression profile whereas no expression was detected for one class in either tissue. Interestingly, a transcriptional polymorphism was found for RGC2 whose expression correlated with resistance to FOC race 4 suggesting a possible role of this gene in resistance to this devastating FOC race. Moreover, RGC2 along with RGC5 showed significant sequence similarity to the Fusarium resistance gene I2 from tomato and were chosen for further characterisation. The NBS sequences isolated in this study represent a valuable source of information that could be used to assist the cloning of functional R genes in banana.
Chapter 5 describes the isolation and characterisation of the full open reading frame (ORF) of RGC2 and RGC5 cDNAs. The ORFs of these two banana RGCs were predicted to encode proteins that showed the typical structure of non-TIR-NBS-LRR resistance proteins. Homology searches using the entire ORF of RGC2 and RGC5 revealed significant sequence similarity to the Fusarium resistance gene I2 from tomato. Interestingly, the phylogenetic analysis showed that RGC2 and RGC5 were grouped within the same phylogenetic clade, along with the Fusarium resistance genes l2 and Fom-2. These findings suggest that the banana RGC2 and RGC5 are potential resistance gene candidates that could be associated with Fusarium resistance. The case of RGC2 is more remarkable because its expression was correlated to FOC race 4 resistance (Chapter 4). As a first step to test whether RGC2 has a role in FOC race 4 resistance, different expression constructs were made with the ORF of this sequence. One of the constructs contains a RGC2 putative promoter region that was successfully cloned in this work. These constructs will be used to transform susceptible banana plants that can then be challenged with FOC race 4 to assess whether resistance has been acquired by genetic complementation.
The results of this thesis provide interesting insights about the structure, expression and phylogeny of two potential Fusarium resistance genes in banana, and provide a rational starting point for their functional characterisation. The information generated in this thesis may lead to the identification of a Fusarium resistance gene in banana in further studies and may also assist the cloning of Fusarium resistance genes in other plant species.
|
Page generated in 0.1154 seconds