Spelling suggestions: "subject:"nucleus tractus solitary""
1 |
Cocaine- and Amphetamine-Regulated Transcript Peptide Attenuates Phenylephrine-Induced Bradycardia in Anesthetized RatsScruggs, Phouangmala, Dun, Siok L., Dun, Nae J. 01 January 2003 (has links)
The present study was undertaken to investigate the origin of cocaine- and amphetamine-regulated transcript (CART) peptide immunoreactive (irCART) fibers observed in the nucleus of the solitary tract (NTS) and assess the role of CART peptide on phenylephrine (PE)-induced baroreflex. Immunohistochemical and retrograde tract-tracing studies showed that some of the irCART fibers observed in the NTS may have their cell bodies in the nodose ganglia. In urethane-anesthetized rats, intracisternal or bilateral intra-NTS microinjection of the CART peptide fragment 55-102 (0.1-3 nmol), referred to herein as CARTp, consistently and dose dependently attenuated PE-induced bradycardia. CARTp, in the doses used here, caused no significant changes of resting blood pressure or heart rate. Bilateral intra-NTS injections of CART antibody (1:500) potentiated PE-induced bradycardia. Injections of saline, normal rabbit serum, or concomitant injection of CARTp and CART antiserum into the NTS caused no significant changes of PE-induced baroreflex. The result suggests that endogenously released CARTp from primary afferents or exogenously administered CARTp modulates PE-induced baroreflex.
|
2 |
Envolvimento do processo inflamatório nas alterações observadas na neurotransmissão glutamatérgica no núcleo do trato solitário de ratos submetidos à hipóxia mantida / Changes in glutamatergic neurotransmission in the nucleus tractus solitarius of rats submitted to sustained hypoxia are related to the inflammatory processSilveira, Ludmila Lima 18 May 2018 (has links)
A hipóxia mantida de curta duração (HM) está associada a alterações cardiorrespiratórias e ao desencadeamento de processo inflamatório em humanos e modelos experimentais. Ademais, há evidências de que a HM pode alterar a transmissão sináptica na região do Núcleo do Trato Solitários (NTS). No presente estudo, utilizamos a minociclina, um inibidor da ativação microglial e antiinflamatório, para avaliar a influência da inflamação desencadeada pela HM sobre a neurotransmissão glutamatérgica nos neurônios do NTS que enviam projeções para a região ventrolateral da medula (NTS-VLM). A hipótese geral do nosso estudo foi a seguinte: a HM induz processo inflamatório no tronco encefálico, o qual contribui para o aumento da neurotransmissão glutamatérgica em neurônios NTS-VLM, colaborando para a elevação da pressão arterial média (PAM) observada nestes ratos. Embora tenhamos observado aumento da pressão arterial média em ambos os grupos de ratos tratados com veículo (solução salina + água destilada, ip) ou minociclina [(30mg/Kg ip por 3 dias) submetidos a 24h de HM (FiO2 0.1) em relação aos seus respectivos grupos controle (FiO2 0,28), o aumento da MAP foi menor nos ratos previamente tratados com minociclina. Os registros eletrofisiológicos utilizando a técnica de whole cell patch-clamp mostraram que a HM não produziu alterações nas propriedades ativas e passivas dos neurônios NTS-VLM. No entanto, os neurônios de ratos submetidos a HM apresentaram aumento nas correntes glutamatérgicas espontâneas e evocadas pelo estímulo do trato solitário. Esse grupo de animais também apresentou aumento no número de microgliais na região do NTS. As alterações mencionadas foram atenuadas pelo tratamento prévio com minociclina. Concluímos que a inflamação induzida pela HM contribui para o aumento da neurotransmissão glutamatérgica nos neurônios NTS-VLM o qual poderia estar relacionado com a hipertensão arterial observada nestes ratos. / Short-term Sustained hypoxia (SH) is associated with cardiorespiratory changes and inflammatory process in humans and experimental models. There is also evidence that SH can change the synaptic transmission in the nucleus tractus solitarius (NTS) region. Here we use the minocycline, an anti-inflammatory and microglial inhibitor, to evaluate the role of inflammation triggered by SH on the excitatory neurotransmission in the NTS neurons sending projections to the ventrolateral medulla (NTS-VLM). We hypothesized that SH induces brainstem inflammatory process, which may contribute to increase in excitatory neurotransmission and excitability of the NTS-VLM neurons, collaborating to the high blood pressure observed on these rats. Although we have observed increased MAP in both groups of rats treated with vehicle (saline + distilled water, i.p) or minociclina [(30mg/Kg i.p for 3 days) submitted to 24h of SH (FiO2 0.1) in relation to their respective control groups (FiO2 0.28), the MAP increase was lower in rats treated with minociclina. The whole cell patch-clamp recordings showed that SH produced no changes in active properties of NTS neurons. However, neurons of rats submitted SH presented an increase in the glutamatergic neurotransmission and the number of microglial at the NTS region. These increases were prevented in the groups previously treated with minociclina. We conclude that inflammation induced by SH contributes to the increased excitatory neurotransmission in NTS-VLM neurons that could be associated to high blood pressure observed in these rats.
|
3 |
Serotonergic axon development in the medulla oblongata in post-natal miceTyagi, Ayushi 08 April 2016 (has links)
Sudden Infant Death Syndrome (SIDS) is the sudden death of an infant younger than one year of age that remains unexplained after a complete investigation. For these infants, many different reasons have been hypothesized as to the cause of these deaths including: inherent vulnerability and improper hypoxic arousal. Studies done in other laboratories have shown that there seems to be a reduction in the levels of the neurotransmitter serotonin (5-HT) in the neurons of the raphe, extra-raphe, and ventral populations along with projection sites of these neurons. The huge implications of 5-HT in the control of respiration, prompted animal model studies to further investigate a potential connection between 5-HT and SIDS. 5-HT deficient mice were engineered by knocking out the Pet-1 transcription factor so that knockout mice only retained 30-40% of their brainstem 5-HT neurons. By comparing these 5-HT deficient Pet-1 knockout mice to wild-type mice, it was demonstrated that 5-HT deficient mice failed to autoresuscitate themselves after repeated bouts of hypoxia. Intriguingly, these mice only experienced an autoresuscitation deficit during a specific time period during development. To further evaluate the pathological development behind this behavior issue, in the current study we utilized mice that have modified Pet-1-Flpe driver, Egr2-Cre driver, along with a knock-in RC::FPSit allele to observe 5-HT development in the brainstem in a mature adult and across the critical period (postnatal days 8 and 13- P8 and P13). The transgenic mouse model Pet1-Krox20 gives us a way of exploring a specific subset of 5-HT neurons that rise from the developmental rhombomeres r3 and r5. The use of the knock-in RC::FPSit allele allows us to view the axonal projections of these specific 5-HT neurons by utilizing the presynaptic marker synaptophysin-GFP. This model (PKSit) will allow us to target 5-HT neurons that are implicated in respiration. We chose to compare two projection targets of the PKSit 5-HT neuron subtype through the vulnerable period of development and mature adult mouse: the Locus Coeruleus (LC) and the Nucleus Tractus Solitarius (NTS). In this study we tested the amount of colabeling between 5-HT and GFP in the LC and NTS at P8, P13, as well as the mature adult. We hypothesize that the LC undergoes significant serotonergic axon development and increases colocalization with GFP labeled axon projections between the ages of P8 and P13. We sliced mouse brains and ran immunofluorescence before taking confocal images. By utilizing ImageJ software to run colocalization analysis on the images obtained, we were able to quantify the amount of 5-HT labeled axon projections that are colocalized with GFP labeled axon projections. The parameters we used to quantify the amount of colocalization include the Pearson's Coefficient (PC), Mander's Coefficient (M1/M2), Cytofluorograms, Costes' Method, and van Steensel's Cross-Correlation Coefficient (CCF). We found that the LC shows significant changes with age in the colocalization of 5-HT with GFP while the NTS does not exhibit significant changes with age. The significant changes found in the LC 5-HT/GFP expression between the ages of P8 and P13 suggest one possible cause of failure of arousal. At P8, this lack of 5-HT colabeling with GFP projections suggests that there is some development occurring, which prevents the proper function of 5-HT. At P13, there is a significant increase in the colabeling of 5-HT with GFP, which indicates that the Pet1-Krox20 lineage is actively using 5-HT. The colocalization studies demonstrate that as the mouse ages, the amount of 5-HT labeling with GFP-synaptophysin in the NTS stays the same. The lack of overlap even in mature adult mice suggests that the expression of 5-HT in GFP labeled projections is not necessary. This colocalization study shows that there is an effect of age on the development of the serotonergic system in the LC, but no effect of age in the NTS. While this demonstrates that there is a critical period of development in relation to the LC, it is only one aspect of why mice pups failed to respond to repeated bouts of hypoxia.
|
4 |
Envolvimento do processo inflamatório nas alterações observadas na neurotransmissão glutamatérgica no núcleo do trato solitário de ratos submetidos à hipóxia mantida / Changes in glutamatergic neurotransmission in the nucleus tractus solitarius of rats submitted to sustained hypoxia are related to the inflammatory processLudmila Lima Silveira 18 May 2018 (has links)
A hipóxia mantida de curta duração (HM) está associada a alterações cardiorrespiratórias e ao desencadeamento de processo inflamatório em humanos e modelos experimentais. Ademais, há evidências de que a HM pode alterar a transmissão sináptica na região do Núcleo do Trato Solitários (NTS). No presente estudo, utilizamos a minociclina, um inibidor da ativação microglial e antiinflamatório, para avaliar a influência da inflamação desencadeada pela HM sobre a neurotransmissão glutamatérgica nos neurônios do NTS que enviam projeções para a região ventrolateral da medula (NTS-VLM). A hipótese geral do nosso estudo foi a seguinte: a HM induz processo inflamatório no tronco encefálico, o qual contribui para o aumento da neurotransmissão glutamatérgica em neurônios NTS-VLM, colaborando para a elevação da pressão arterial média (PAM) observada nestes ratos. Embora tenhamos observado aumento da pressão arterial média em ambos os grupos de ratos tratados com veículo (solução salina + água destilada, ip) ou minociclina [(30mg/Kg ip por 3 dias) submetidos a 24h de HM (FiO2 0.1) em relação aos seus respectivos grupos controle (FiO2 0,28), o aumento da MAP foi menor nos ratos previamente tratados com minociclina. Os registros eletrofisiológicos utilizando a técnica de whole cell patch-clamp mostraram que a HM não produziu alterações nas propriedades ativas e passivas dos neurônios NTS-VLM. No entanto, os neurônios de ratos submetidos a HM apresentaram aumento nas correntes glutamatérgicas espontâneas e evocadas pelo estímulo do trato solitário. Esse grupo de animais também apresentou aumento no número de microgliais na região do NTS. As alterações mencionadas foram atenuadas pelo tratamento prévio com minociclina. Concluímos que a inflamação induzida pela HM contribui para o aumento da neurotransmissão glutamatérgica nos neurônios NTS-VLM o qual poderia estar relacionado com a hipertensão arterial observada nestes ratos. / Short-term Sustained hypoxia (SH) is associated with cardiorespiratory changes and inflammatory process in humans and experimental models. There is also evidence that SH can change the synaptic transmission in the nucleus tractus solitarius (NTS) region. Here we use the minocycline, an anti-inflammatory and microglial inhibitor, to evaluate the role of inflammation triggered by SH on the excitatory neurotransmission in the NTS neurons sending projections to the ventrolateral medulla (NTS-VLM). We hypothesized that SH induces brainstem inflammatory process, which may contribute to increase in excitatory neurotransmission and excitability of the NTS-VLM neurons, collaborating to the high blood pressure observed on these rats. Although we have observed increased MAP in both groups of rats treated with vehicle (saline + distilled water, i.p) or minociclina [(30mg/Kg i.p for 3 days) submitted to 24h of SH (FiO2 0.1) in relation to their respective control groups (FiO2 0.28), the MAP increase was lower in rats treated with minociclina. The whole cell patch-clamp recordings showed that SH produced no changes in active properties of NTS neurons. However, neurons of rats submitted SH presented an increase in the glutamatergic neurotransmission and the number of microglial at the NTS region. These increases were prevented in the groups previously treated with minociclina. We conclude that inflammation induced by SH contributes to the increased excitatory neurotransmission in NTS-VLM neurons that could be associated to high blood pressure observed in these rats.
|
5 |
Substance P Release in the Feline Nucleus Tractus Solitarius During Ergoreceptor but Not Baroreceptor Afferent SignalingWilliams, Carole A., Reifsteck, Angela, Hampton, Toby A., Fry, Bonnie 19 July 2002 (has links)
Substance P (SP) is associated with metabo- and mechanoreceptor afferent fibers ('ergoreceptors') in skeletal muscle as well as the afferent fibers from carotid sinus baroreceptors. Afferent activity from each of these are at least partially integrated in the nucleus tractus solitarius (NTS). The purpose of this study was to determine whether SP was released from the NTS during acute reflex-induced changes in blood pressure caused by stimulating these receptors. Both the muscle pressor response and the baroreflex were studied in adult cats anaesthetized with α-chloralose. SP antibody-coated microprobes were used to measure the possible release of SP from the NTS. The muscle pressor response caused a release of immunoreactive SP-like substances (irSP) from the rostral medial NTS, as well as the dorsal motor nucleus (DMV) and lateral tegmental field (FTL). This release was not dependent on intact afferent input from the carotid sinus nerve, but was a function of activation of muscle ergoreceptors, since no irSP was released in response to stimulation of the motor nerves after the muscle was paralyzed. There was no detectable release of irSP from the mNTS during carotid artery occlusions (baroreceptor unloading). Baroreceptor activation, induced by the i.v. injection of the vasoconstrictor, phenylephrine, did not cause the release of irSP from the mNTS above resting baseline levels. These data suggest that SP is involved with the mediation of the afferent signal from muscle ergoreceptor fibers in the medial NTS. SP is not involved with the mediation of baroreceptor afferent signaling in the medial NTS. The release of SP in response to ergoreceptors activation may function to excite an inhibitory pathway which inhibits baroreflex signals that would tend to reduce the blood pressure and heart rate during the muscle pressor response.
|
6 |
c-Fos Expression in Rat Brain Stem and Spinal Cord in Response to Activation of Cardiac Ischemia-Sensitive Afferent Neurons and Electrostimulatory ModulationHua, Fang, Harrison, Theresa, Qin, Chao, Reifsteck, Angela, Ricketts, Brian, Camel, Charles, Williams, Carole A. 01 December 2004 (has links)
The purpose of this study was to identify central neuronal sites activated by stimulation of cardiac ischemia-sensitive afferent neurons and determine whether electrical stimulation of left vagal afferent fibers modified the pattern of neuronal activation. Fos-like immunoreactivity (Fos-LI) was used as an index of neuronal activation in selected levels of cervical and thoracic spinal cord and brain stem. Adult Sprague-Dawley rats were anesthetized with urethane and underwent intrapericardial infusion of an "inflammatory exudate solution" (IES) containing algogenic substances that are released during ischemia (10 mM adenosine, bradykinin, prostaglandin E2, and 5-hydroxytryptamine) or occlusion of the left anterior descending coronary artery (CoAO) to activate cardiac ischemia-sensitive (nociceptive) afferent fibers. IES and CoAO increased Fos-LI above resting levels in dorsal horns in laminae I-V at C2 and T4 and in the caudal nucleus tractus solitarius. Dorsal rhizotomy virtually eliminated Fos-LI in the spinal cord as well as the brain stem. Neuromodulation of the ischemic signal by electrical stimulation of the central end of the left thoracic vagus excited neurons at the cervical and brain stem level but inhibited neurons at the thoracic spinal cord during IES or CoAO. These results suggest that stimulation of the left thoracic vagus excites descending inhibitory pathways. Inhibition at the thoracic spinal level that suppresses the ischemic (nociceptive) input signal may occur by a short-loop descending pathway via signals from cervical propriospinal circuits and/or a longer-loop descending pathway via signals from the nucleus tractus solitarius.
|
7 |
Chemosensitive Neurons of the Locus Coeruleus and the Nucleus Tractus Solitarius: Three Dimensional Morphology and Association with the VasculatureGraham, Cathy D. 03 September 2014 (has links)
No description available.
|
Page generated in 0.0835 seconds