• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generalized additive Runge-Kutta methods for stiff odes

Tanner, Gregory Mark 01 August 2018 (has links)
In many applications, ordinary differential equations can be additively partitioned \[y'=f(y)=\sum_{m=1}^{N}\f{}{m}(y).] It can be advantageous to discriminate between the different parts of the right-hand side according to stiffness, nonlinearity, evaluation cost, etc. In 2015, Sandu and G\"{u}nther \cite{sandu2015gark} introduced Generalized Additive Runge-Kutta (GARK) methods which are given by \begin{eqnarray*} Y_{i}^{\{q\}} & = & y_{n}+h\sum_{m=1}^{N}\sum_{j=1}^{s^{\{m\}}}a_{i,j}^{\{q,m\}}f^{\{m\}}\left(Y_{j}^{\{m\}}\right)\\ & & \text{for } i=1,\dots,s^{\{q\}},\,q=1,\dots,N\\ y_{n+1} & = & y_{n}+h\sum_{m=1}^{N}\sum_{j=1}^{s^{\{m\}}}b_{j}^{\{m\}}f^{\{m\}}\left(Y_{j}^{\{m\}}\right)\end{eqnarray*} with the corresponding generalized Butcher tableau \[\begin{array}{c|ccc} \c{}{1} & \A{1,1} & \cdots & \A{1,N}\\\vdots & \vdots & \ddots & \vdots\\ \c{}{N} & \A{N,1} & \cdots & \A{N,N}\\\hline & \b{}{1} & \cdots & \b{}{N}\end{array}\] The diagonal blocks $\left(\A{q,q},\b{}{q},\c{}{q}\right)$ can be chosen for example from standard Runge-Kutta methods, and the off-diagonal blocks $\A{q,m},\:q\neq m,$ act as coupling coefficients between the underlying methods. The case when $N=2$ and both diagonal blocks are implicit methods (IMIM) is examined. This thesis presents order conditions and simplifying assumptions that can be used to choose the off-diagonal coupling blocks for IMIM methods. Error analysis is performed for stiff problems of the form \begin{eqnarray*}\dot{y} & = & f(y,z)\\ \epsilon\dot{z} & = & g(y,z)\end{eqnarray*} with small stiffness parameter $\epsilon.$ As $\epsilon\to 0,$ the problem reduces to an index 1 differential algebraic equation provided $g_{z}(y,z)$ is invertible in a neighborhood of the solution. A tree theory is developed for IMIM methods applied to the reduced problem. Numerical results will be presented for several IMIM methods applied to the Van der Pol equation.

Page generated in 0.1225 seconds