• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Planktivorous fishes : links between the Mediterranean littoral and pelagic

Pinnegar, John Keith January 2000 (has links)
No description available.
2

Dynamika uvolňování živin v průběhu procesu dekompozice smrkového dřeva v prostředí horského lesa / Mineralization of nutrients during the process of spruce dead wood decomposition in the mountain forest

Višňová, Anna January 2017 (has links)
Summary: This thesis is focused on collecting information on the importance of dead wood on biogeochemical cycles of chemical elements in the mountain forest ecosystems of central Europe. The goal of this thesis was to determine the concentration of various elements(C, N, P, Ca, Mg, K, Na, Mn, Al, Fe) in the coarse woody debris of spruce samples of different age, stage of decomposition which were collected in different localities in the national park Šumava. Another goal was to determine the speed of which these elements are released from the dead wood. The information on the quantity of different elements and the speed of their release is currently lacking and could lead to better understanding of various biogeochemical cycles of elements in the mountain forest. During the decomposition the concentration of the elements N, P, Al and Fe increased whereas the Kalium concentration decreased. The other elements' (C, N, Ca, Mg, Mn) concentrations varied. Carbon constituted approximately 50% of weight in all of the samples analyzed. We carried out a laboratory experiment based on decomposition of dead wood samples in various stage of decay during a period of six months. The released concentration of CO2 was measured at two to four weeks intervals. The release of CO2 continually decreased during the experiment.....
3

Quantification of Nitrate Sources and Sinks Using a Water Quality Network in Morro Bay Estuary, California

Weston, Johanna Nadia Jean 01 October 2011 (has links) (PDF)
Using an instrumented water quality network in Morro Bay Estuary, California from 2007 to 2010 (15 min sampling frequency), this study addressed the two objectives of constructing a nitrate budget and assessing the influence of sampling frequency on water quality parameters. These two objectives led to the submission of an original report of research (Appendix A) and a note (Appendix B) to peer-reviewed journals. The first objective was to characterize the high spatial and temporal variation in physical parameters and nitrate concentrations and to construct a nitrate budget quantifying sources and sinks of nitrate from the ocean, streams, and groundwater, as well as biological processes in the Estuary. Morro Bay Estuary was found to be a non-eutrophic system and a mean net exporter of nitrate, 327.15 t yr-1. Fifty-four percent of the nitrate export was attributed to nitrate sources and internal biological processing. Nitrate loading from streams contributed 37 % to the export of nitrate (124.01 t yr-1), while groundwater nitrate loading supplied a conservative estimate of 46 % of the exported nitrate (153.92 t yr-1), with a neap tide enhancement of the discharge. Denitrification, Zostera marina, and benthic macroalgae assimilation of nitrate were the dominant internal biological processes for removal and retention, but were only 35% of the total nitrate budget. The second objective was to investigate the impact of sampling frequency and sampling location on understanding dynamics in water quality by degrading a year time series of seven parameters from three water quality monitoring stations to sampling frequencies ranging from 15 minutes to 28 days. In Morro Bay Estuary, the semi-diurnal tidal cycle was the maximum component frequency driving the variability of temperature, turbidity, and dissolved oxygen concentrations. For these parameters, asymptotes were reached and sampling frequencies greater than six hours did not explain the additional variation in the parameters sampled. Whereas, salinity, turbidity, and nitrate concentrations lacked an asymptote, and decreased sampling frequencies led to increased estimated error. Sampling water quality parameters every 28 days can lead to mean annual difference of 30 – 140 % from 15 minute sample annual mean. We recommend sampling frequencies should be selected to oversample the tidal signal to at least hourly frequencies to capture diel cycles and episodic events that contribute significantly to understanding the variability in the estuarine physical and biological dynamics.
4

Biomass production and nutrient cycling in short-rotation coppice willow (Salix spp.) bioenergy plantations in Saskatchewan, Canada

2013 December 1900 (has links)
Biomass energy is currently the largest renewable contributor to global energy supply and there is increasing demand for bioenergy feedstock. Consequently, the production of purpose-grown woody bioenergy crops, such as short rotation coppice (SRC) willow, is expected to proliferate. Although the economic and environmental benefits associated with SRC willow production are well documented, systematic assessments of nutrient cycling within these plantations are rare. The objective of this study was to examine biomass production and biogeochemical cycling of nitrogen (N), phosphorus (P), potassium (K), sulphur (S), calcium (Ca), and magnesium (Mg) during an initial four-year rotation of six willow varieties grown at four plantations along a 500 km north-south pedoclimatic gradient within Saskatchewan, Canada. Nutrient budgets were also calculated after quantifying various nutrient inputs (e.g., atmospheric deposition, soil mineral weathering, and organic matter mineralization), outputs (e.g., above- and below-ground biomass, leaching, and denitrification), and transfers (e.g., canopy exchange, leaf litter decomposition, and fine root turnover) affecting the plant available soil nutrient pool. Total stem, leaf litter, and below-ground (primarily fine roots) biomass production after four years averaged 19.0, 7.1, and 12.5 Mg ha-1, respectively, with corresponding soil nutrient budget deficits of 17, 39, 112, 271, and 74 kg ha-1 of N, P, K, Ca, and Mg, respectively, but a soil S surplus of 60 kg ha-1. Despite willow’s relatively low nutrient-demanding nature, negligible leaching and denitrification losses, and substantial nutrient cycling from leaf litter, the nutrient export in harvested biomass over multiple rotations will require soil nutrient amendments, particularly N and P, to maintain plantation productivity. Given the apparent eventual need for supplemental fertility to support adequate willow growth over the 22-yr plantation life span, the fate of broadcast 15N-labelled fertilizer was also examined. Though the willow accumulated less than ⅓ of the applied fertilizer N after one year, the majority of the residual fertilizer N (51%) remained available for willow uptake in subsequent years. Further research is needed to track the fate of applied fertilizers over multiple rotations to better understand fertilizer dynamics for optimizing SRC willow agronomy; thus helping to promote its viability as a biomass energy feedstock option.

Page generated in 0.0731 seconds