• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

How does nutrients and light affect algal growth in Swedish headwater streams? : A study using nutrient diffusing substrate and natural gradients of light / Hur påverkar näring och ljus algtillväxt i svenska bäckar? : En studie med diffunderande näringssubstrat och naturliga ljusgradienter

Andersson, Jannika January 2014 (has links)
Gaining knowledge about what factors determine benthic algal biomass and productivity is vital for understanding food webs in aquatic systems, especially in woodland streams with naturally low rates of primary productivity. The aim of this study was to investigate what factors determine algal growth in Swedish headwater streams. Nutrients, in terms of nitrogen (N) and phosphorus (P), and light are factors known to affect algal growth. By using nutrient diffusing substrate (NDS) and different gradients of light, it was possible to test the importance of these factors. To determine the effect of the experiment, the study was carried out in a forested reference stream, which is largely shaded with extreme low nutrient levels, and in a stream running through a clear-cutting plantation with high nutrient levels and incident light. In the forested reference stream it became clear that algal growth increased by experimentally adding N (P<0.005), although light did not affect the productivity. In the stream running through the clear-cut, algal productivity increased significantly with higher levels of light (P<0.005), regardless of nutrient addition. The results from this study suggest that light only becomes the depending factor when sufficient amounts of nutrients are available. However, it is still unclear at what nutrient levels this shift occur, and therefore future research is recommended.

Page generated in 0.113 seconds