• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tillämpning av en markprofilmodell för hydrologiska beräkningar i avrinningsområdesskala / Application of a soil profile model for hydrological estimations in catchment scale

Hellgren, Stefan January 2010 (has links)
There is a great need to reduce nutrient leaching from arable land into lakes and oceans. By using several different types of models it has previously been possible to describe nutrient losses in a catchment area with a minimum unit of sub-catchment level. At present, it is instead desirable to model a smaller catchment with an opportunity to re-connect the results to the corresponding fields in the catchment. Such models already exist but they are not fully able to properly describe Swedish conditions and land characteristics in our region. With the approach of creating such a model, SLU has developed a project with this work as its first stage. The model is expected to be created under the working name SWE-model which stands for Soil Water Environment and is in this first stage supposed to apply the SOIL model in catchment scale. During the procedure to describe the first step in the process of developing such a model adapted to Swedish conditions and which works in the catchment scale with an area of about 10-30 km2, focus has been set on calculating the transport of water flow from different hydrological response units. Regardless of the processes occurring in the soil after the water has been added, it is assumed that all the water which flows from each simulated unit is drained. In the first step the hydrologic response units were identified based on land use and soil type in the study area. With the help of a script with functions that retrieve and transform data, certain units were chosen for simulation. The script was also created in this project. Finally, the model results were aggregated and summarized for each unique unit, for each sub-catchment, and also for the whole catchment. From the results it is possible to see similarities in the flow dynamics between modeled and measured data. The efficiency coefficient has been calculated to correspond to the mean of the measured values for the whole simulation period. With an automated calibration process the model should be able to perform better. The volume error gives an indication of overestimation from the model.
2

Phytostabilization of mine tailings covered with fly ash and sewage sludge

Neuschütz, Clara January 2009 (has links)
Establishing plant communities is essential for the restoration of contaminated land. As potential cover materials, fly ash and sewage sludge can prevent formation of acid mine drainage from sulfidic mine waste. The aim of the thesis was to i) screen for plants that can be established in, and prevent leakage of metals and nutrients from sludge on top of ash and tailings, and ii) investigate root growth into sealing layers of ash and sludge. Analyses were performed under laboratory, greenhouse and field conditions using selected plant species to examine the release of Cd, Cu, Zn, N, and P from the materials. Plant physiological responses and interactions with fly ash were also investigated. The data show that plants can decrease metal and nutrient leakage from the materials, and lower the elemental levels in the leachate, but with varying efficiencies among plant species. Plants capable of taking up both nitrate and ammonium were more efficient in preventing N leakage compared with those taking up primarily ammonium. Fast growing plants could raise the pH in acidic sludge leachate, but the initial pH decrease and N leakage was not counteracted by plants. Germination in fresh sludge was problematic, but enhanced by aeration of the sludge. In general, the accumulation of metals in plant shoots was low, especially if ash was located below the sludge. Fresh ash was phytotoxic (e.g., high alkalinity, salinity and metal levels) and induced the activity of stress-related enzymes in shoots. In sealing layers of aged and cured ash, roots could grow if the penetration resistance was low, or into the surface of stronger layers if the surface had become pulverized. The roots caused dissolution of calcium-rich minerals, possibly by exudation of saccharides. Addition of sludge to an ash layer increased root growth, likely due to decreased bulk density and pH, and nutrient addition. In conclusion, with selected plant species and a properly constructed cover, metal and nutrient leaching from the materials and root growth into the sealing layer can be restricted.

Page generated in 0.0614 seconds