• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Edge-of-field Associated Nitrate-N Loss in a Soybean-corn Rotation

Mitchell J Greve (8108663) 12 December 2019 (has links)
<p>Across the United States corn-belt region substantial quantities of nitrogen (N) fertilizer are applied in both continuous corn (<i>Zea mays</i>L.) and corn grown in rotation with soybean [<i>Glycine max</i>(L.) Merr.]. When compared to continuous corn, corn grown in rotation with soybean typically receives less applied N fertilizer (typically 20-45 kg ha<sup>-1</sup>less) than continuous corn due to expected carryover of N from biological N fixation (BNF) by soybean in the preceding year. However, when current N recommendations are followed in both systems, rotational corn has been shown to lose similar or, in some cases, greater amounts of N through subsurface tile lines than continuous corn although the reports in the literature have been inconsistent. In rain-fed systems a key limitation to many previous studies has been an insufficient number of site-years of data to fully characterize management effects across varied environments. Regardless, the development of better management practices to reduce nitrate leaching losses has largely remained focused on managing N applied to corn and soybean’s role in degradation of surface water has been relatively understudied in tile drained agroecosystems. Therefore, the objectives of this study were to use a 23-yr data record to: (1) compare quantities and patterns of N loss in tile drainage water among a soybean-corn rotation fertilized with the recommended preplant N rate, a soybean-corn rotation fertilized with a N reduced rate applied as a sidedress, continuous corn fertilized with the recommended preplant N rate, and an unfertilized, restored prairie as a natural system control, (2) determine whether and when cumulative soybean-corn load losses in drainage water surpassed that of continuous corn, and (3) evaluate the current recommended N credits from the dual perspective of crop productivity and protection of water quality. </p><p> Established in 1992, the Purdue University Water Quality Field Station has continuously assessed field-scale N cycling and losses in tile drains and the N management of the five treatments examined in this study have been maintained since 1995. Treatments were 135 kg N ha<sup>-1 </sup>applied in rotational corn as a sidedress at approximately V6 each year (CS-135), 157 kg N ha<sup>-1</sup>applied preplant in rotational corn (CS-157), and 180 kg N ha<sup>-1</sup>applied preplant in continuous corn (CC-180). All corn plots received 23 kg N ha<sup>-1</sup>as starter at planting. A restored perennial prairie control with no fertilizer applied (Pgrass) was utilized to compare and discuss the implications of intensively fertilized annual row crops. The 23-yr data record includes N concentration in drainage water, drainflow volume, N load losses in drainflow, grain yield, tissue N concentrations at harvest and N amounts returned to soil in crop residues and removed in grain. </p> Analysis of variance found CS-157 resulted in significantly greater daily flow-proportional N concentrations (23-year mean 11.98 mg L<sup>-1</sup>) when compared to all other cropping systems (≤ 10.96 mg L<sup>-1</sup>). No reportable significant differences occurred in mean annual drainage flow volume among the respective cropping systems. Annual N load loss was statistically similar among cropping systems, ranging between 9.88 to 12.32 kg N ha<sup>-1</sup>yr<sup>-1</sup>, and these were all significantly higher than the Pgrass control (1.70 kg N ha<sup>-1</sup>yr<sup>-1</sup>). When corn and soybean years in rotational systems were analyzed separately for leaching losses, CS-157 was significantly higher than CS-135 and CC-180 (14.70, 10.85 and 11.88 kg N ha<sup>-1</sup>, respectively) whereas losses by SC-157 and SC-135 were similar averaging 12.26 and 12.13 kg N ha<sup>-1</sup>, respectively. Nitrogen treatment did not impact either corn or soybean mean yields. We concluded that soybean BNF production may be a major driver in N load loss in rotational corn when compared to continuous corn and further reductions in load losses from rotational systems will require a focus on managing soybean-derived N. Lastly, future research should include monthly or seasonal assessment of N load losses to better target practices at vulnerable times of nutrient loss.

Page generated in 0.0889 seconds