201 |
Field and model studies of the nearshore circulation.Harris, Thomas Frank Wyndham. January 1967 (has links)
Investigations into the characteristics and underlying mechanism
of the circulation of water near the shore are reported. The two
main types of circulation, one a cellular system resulting from
Haves propagated nearly normally to the shore, and the other an
essentially alongshore flow associated with oblique waves, are
treated separately.
The cellular circulation studies were made in the field at
Virginia Beach and more extensively in wave tanks. From the field
experiments data were collected about the dimensions of the cells,
the way in which the Hater circulated, the rate of exchance of surf
zone water and the extent of recycling. A method for measuring the
changes in the mean sea level over intervals of time greater than
those of the wave periods, was developed. The model experiments
carried out in uniform wave tanks showed that the cellular circulations could be well simulated. Measurements were made of
the cell dimensions, the velocity of the longshore and rip currents,
and of the recycling regime.
A finding from the wave tank studies Has the presence of standing
waves formed by transverse edge waves. The interaction of these
standing waves with the gene rated waves normal to the shore could
be the initial cause of rip currents and the cellular circulation.
Studies of the alongshore system were made in the field only.
A method for measuring the volume of flow of longshore currents
was developed, tested, and applied. Calculated volumes of flow
using a theory based on continuity and the solitary wave theory
(as proposed by Inman and Bagnold) compared tolerably well with the
field observations. The calculations of volume of flow required a
knowledge of the wave height spectra in the surf. This was
established by making wave height recordings in the between-breaker
zone . It was found that the characteristics of the spectra
compared reasonably well with those pr e dict ed by the Longuet-Higgins
theory, previously assumed to apply to deep water waves only.
A mechanism for the transition from cellular to alongshore system is proposed. / Thesis (Ph.D.)-University of Natal, 1967.
|
202 |
Isotopic trends of calcareous plankton across the Equatorial Pacific high productivity zoneShowers, William J January 1982 (has links)
Bibliography: leaves 254-267. / Microfiche. / xiii, 267 leaves, bound ill. 29 cm
|
203 |
Coastal ocean response to alongshore variations in topography and wind forcing /Castelao, Renato Menezes. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2006. / Printout. Includes bibliographical references (leaves 195-211). Also available on the World Wide Web.
|
204 |
Nearshore topographic fronts : their effect on larval settlement and dispersal at Sunset Bay, OregonMcCulloch, Anita January 2001 (has links)
Typescript.
Includes vita and abstract.
Bibliography: Includes bibliographical references (leaves 57-64).
Description: x, 64 leaves : ill. (some col.), maps ; 29 cm.
|
205 |
Investigating sediment size distributions and size-specific Sm-Nd isotopes as paleoceanographic proxy in the North Atlantic Ocean : reconstructing past deep-sea current speeds since Last Glacial MaximumLi, Yuting January 2018 (has links)
To explore whether the dispersion of sediments in the North Atlantic can be related to modern and past Atlantic Meridional Overturning Circulation (AMOC) flow speed, particle size distributions (weight%, Sortable Silt mean grain size) and grain-size separated (0–4, 4–10, 10–20, 20–30, 30–40 and 40–63 μm) Sm-Nd isotopes and trace element concentrations are measured on 12 cores along the flow-path of Western Boundary Undercurrent and in the central North Atlantic since the Last glacial Maximum (LGM). North Atlantic is a useful place to explore how size-specific sediment provenance is related to sedimentary inputs and deep-current advection because mantle-derived materials in Iceland is a unique sedimentary source compared to crustal-derived terranes in Europe, Greenland and North America. The four main processes transporting sediments from continents to the North Atlantic (bottom currents, turbidity currents, ice-rafting events, airborne inputs) can be well distinguished through the size-specific physical and geochemical records. When primarily advected by the bottom currents, Holocene sediments show that the finer-sized fractions (0–4, 4–10, 10–20 μm) were transported further, and the coarser size fraction (40–63 μm) matched local inputs. In the deep coretops (> 2700 m) proximal to southern Greenland, fine-slit size fraction (10–20 μm) instead of clay size fraction (0–4 μm) observed more Icelandic-material contribution. In the past, the 20–30, 30–40 and 40–63 μm particles in the shallower Iceland-proximal core (1249 m) reflect Icelandic composition variation due to the abrupt volcanic eruption around 13–9 ka; while in the deeper Iceland-proximal core (2303 m) they were sensitive to the changing bottom flow speed. Downstream in cores proximal to southern Greenland (> 2272 m) and eastern North America (3555 m), composition of the 20–63 μm sediments could be used as an indicator for the retreating of the Greenland and Laurentide Ice Sheets which affect the sediment accessibility of the covered geological terranes; while the 0–4, 4–10 and 10–20 μm particles were more sensitive towards the changing direction (northern-sourced or southern-sourced) and velocity of the bottom current. In the open North Atlantic, the composition of the 0–10 μm particles were less variable between the cold and warm climate intervals compared to the 10–63 μm particles, and the 30–40 and 40–63 μm size fractions were sensitive towards both ice-rafting events and bottom flow direction. During LGM, shallower and vigorous northern-sourced water (NSW) was observed overlaying the deeper southern-sourced water (SSW), with the boundary between 2133 to 2303 m in southern Iceland, and ~ 2272 m in southern Greenland. Reduced NSW occurred during Heinrich Stadial 1, until AMOC above ~ 3500 m recovered to vigorous modern-like version no later than ~ 13.5 ka. Sluggish overflow was observed in North Atlantic between 12.2–11.7 ka above ~ 3500 m. Reduction of Iceland-Scotland Overflow Water occurred around 9.7 ka, and started recovering to its modern vigorous no later than ~ 8.6 ka. These relative past AMOC strength variations (vigorous/sluggish) are firstly converted to actual bottom-current speed (in cm/s) using laminar advection model in this work: vertical settling velocity of particle having the most Icelandic contribution is calculated by Stokes’ Law, and the lateral deep-sea current speed is calculated when the vertical settling depth and the lateral advection distance of the particle traveled before settling are constrained. Primary modelling errors originating from temperature/salinity variations in past deep seawater, winnowing process in fine particles, basaltic-signature dilution by crustal input, and lateral advection pathways of Icelandic-material are further discussed, indicating relatively low modelling error (< ~ 10–20 %). The modelling results agree well with modern deep-sea current speed measurements and backtrack-trajectory eddy resolving model (Ocean model for the Earth Simulator, OFES18), indicating reasonable quantifications of past AMOC flow speeds.
|
206 |
Fonctionnement dynamique du centre d'upwelling Sud-Sénégalais : approche par la modélisation réaliste et l'analyse d'observations satellite de température de surface de la mer / Dynamics functioning of the Southern Senegal upwelling center : realistic modeling approach and remote sensing SST analysisNdoye, Siny 11 March 2016 (has links)
L’extrémité sud du système du courant des Canaries comprend un centre d’upwelling (résurgence localisée d’eaux froides sous l’action de vents favorables) qui a jusqu’ici reçu peu d’attention. Ma thèse porte sur la dynamique de ce centre d’upwelling sud Sénégal ou SSUC (Southern Senegal Upwelling Center en anglais). Elle s’intéresse donc à la circulation et à la structure thermohaline sur le large plateau sud-sénégalais, entre la côte et _100-200 km au large en se focalisant sur la période d’upwelling (Novembre-Mai). Une des particularités de la zone est la séparation entre la zone d’upwelling au centre du plateau et des eaux plus chaudes au large et à la côte. Mes travaux combinent analyse d’images satellite et d’observations in-situ, avec la réalisation et l’analyse de simulations numériques dans l’état de l’art. Par une analyse fine des conditions physiques de la zone, ils posent la base à une approche intégrée du fonctionnement de l’environnement marin sénégalais. Une première partie des résultats se base sur l’examen et l’analyse de plus de 1500 images satellite de température de surface de la mer SST MODIS, contextualisées par rapport aux conditions synoptiques de vent. Cette analyse met en lumière l’existence d’états récurrents du SSUC, en termes de SST. Elles confirment plus généralement la régularité et la stabilité du fonctionnement dynamique du système, mais aussi révèlent des aspects subtils de la structure de l’upwelling : refroidissement des eaux de surface probablement dû au déferlement et au mélange associé à la marée interne ; interaction complexe entre la remontée locale, le courant de Mauritanie et le jet côtier ; complexité probable des échanges entre les différentes parties du plateau (plateau intérieur accueillant des eaux réchauffées, plateau central où est fréquemment situé la langue d’eau froide). L’amplitude du cycle diurne suggère que de grandes incertitudes restent à lever dans le budget de chaleur de l’upwelling . Les limites des études soulignent la nécessité de continuer la mesure in situ dans le SSUC, en particulier des vents. Le fonctionnement dynamique du SSUC est aussi étudié par la modélisation hydrodynamique (ROMS) à haute résolution (_2km). Différentes simulations ont été réalisées en variant les forçages (climatologiques ou synoptiques pour le vent ; modification fine échelle des flux de chaleur en domaine côtier ; présence ou absence de marée). Les solutions numériques montrent en général un bon accord avec les observations satellite et in situ disponibles. Ces solutions éclairent le fonctionnement dynamique du système notamment en termes de circulation, de position de remontée d’upwelling, mais également du devenir des eaux upwellées grâce à une analyse lagrangienne. Nous avons notamment pu montrer que la zone nord du SSUC est la zone principale de remontée et les eaux qui y remontent, proviennent en grande majorité de la zone sud du SSUC d’où elles sont amenées par le courant de Mauritanie. Les analyses lagrangiennes ont aussi permis de - 3 - révéler la dynamique associée à la zone côtière de nourricerie et de nuancer le schéma conceptuel de rétention précédemment admis. La sensibilité de la dynamique du SSUC aux forçages atmosphériques est modeste avec néanmoins des modulations des échanges cross-shore qui peuvent être importantes pour l’écosystème. / The southern end of the Canary current system comprises of an original upwelling center that has so far received little attention. This Ph.D. Thesis focuses on the dynamical functioning of the Southern Senegal-Gambia Upwelling Center (SSUC). We are interested in the upwelling circulation and thermohaline structure on the shelf between the coastline and 100-200 km offshore. Our focus is on the upwelling period (November to May). The main originality of the SSUC compared to other upwelling centers stems from its continental shelf that is broad and shallow (20–30 m over tens of kilometers). The normal state of the system comprises the classical upwelling front but also a well-defined inner-shelf front that separates cold upwelled waters from nearshore warmer waters. We investigate its dynamical functioning using analysed satellite images, in situ data and state-of-theart 3D numerical simulations. Through a fine-scale analysis of the physical conditions of the SSUC, this work poses the basis of an integrated approach to the Senegalese marine environment functioning. A first part of results is based on the careful examinations and analysis of over 1500 satellite images of sea surface temperature scenes contextualized with respect to wind conditions. Analysis confirm the regularity and stability of the SSUC dynamical functioning (as manifested by the recurrence and persistence of particular SST patterns). The analysis also reveal subtle aspects of its upwelling structure : shelf break cooling of surface waters consistent with internal tide breaking/mixing ; complex interplay between local upwelling and the Mauritanian current off the Cape Verde headland ; complexity of the inner-shelf/mid shelf frontal transition. The amplitude of the diurnal cycle suggests that large uncertainties exist in the SSUC heat budget. The studies limitations underscore the need for continuous in situ measurement in the SSUC, particularly of winds. The dynamical functioning of SSUC is also investigated by means of numerical simulations, using the hydrodynamical Regional Ocean Modeling System ROMS (_x _ 2 km). Different simulations have been carried with varying forcings (climatological or synoptic wind ; fine-scale adjustments of heat flux in coastal area ; presence or absence of tides). Numerical solutions show a good agreement with available satellite and in situ observations . These solutions clarify the dynamical functioning of the system especially in terms of circulation, location of cold water upwelling but also fate of upwelled water through a Lagrangian analysis. We show in particular that the northern part of the SSUC is the main upwelling area. Waters that upwelled in this area predominantly come from the southern of the SSUC, through advection by the Mauritanian current. Lagrangian analysis also revealed the dynamics associated with the coastal area of nursery and nuance the conceptual retention scheme previously admitted. The sensitivity of the dynamics of SSUC to atmospheric forcings is modest with nevertheless some modulations of the cross-shore exchanges that may be important to the ecosystem.
|
207 |
Dynamics of marine zooplankton : social behavior, ecological interactions, and physically-induced variabilityVerdy, Ariane January 2008 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2008. / Includes bibliographical references (p. [221]-232). / Marine ecosystems reflect the physical structure of their environment and the biological processes they carry out. This leads to spatial heterogeneity and temporal variability, some of which is imposed externally and some of which emerges from the ecological mechanisms themselves. The main focus of this thesis is on the formation of spatial patterns in the distribution of zooplankton arising from social interactions between individuals. In the Southern Ocean, krill often assemble in swarms and schools, the dynamics of which have important ecological consequences. Mathematical and numerical models are employed to study the interplay of biological and physical processes that contribute to the observed patchiness. The evolution of social behavior is simulated in a theoretical framework that includes zooplankton population dynamics, swimming behavior, and some aspects of the variability inherent to fluid environments. First, I formulate a model of resource utilization by a stage-structured predator population with density-dependent reproduction. Second, I incorporate the predator-prey dynamics into a spatially-explicit model, in which aggregations develop spontaneously as a result of linear instability of the uniform distribution. In this idealized ecosystem, benefits related to the local abundance of mates are offset by the cost of having to share resources with other group members. Third, I derive a weakly nonlinear approximation for the steady-state distributions of predator and prey biomass that captures the spatial patterns driven by social tendencies. Fourth, I simulate the schooling behavior of zooplankton in a variable environment; when turbulent flows generate patchiness in the resource field, schools can forage more efficiently than individuals. / (cont.) Taken together, these chapters demonstrate that aggregation/ schooling can indeed be the favored behavior when (i) reproduction (or other survival measures) increases with density in part of the range and (ii) mixing of prey into patches is rapid enough to offset the depletion. In the final two chapters, I consider sources of temporal variability in marine ecosystems. External perturbations amplified by nonlinear ecological interactions induce transient ex-cursions away from equilibrium; in predator-prey dynamics the amplitude and duration of these transients are controlled by biological processes such as growth and mortality. In the Southern Ocean, large-scale winds associated with ENSO and the Southern Annular Mode cause convective mixing, which in turn drives air-sea fluxes of carbon dioxide and oxygen. Whether driven by stochastic fluctuations or by climatic phenomena, variability of the biogeochemical/physical environment has implications for ecosystem dynamics. / by Ariane Verdy. / Ph.D.
|
208 |
Injection and movement of Tritium-³He in the Northeastern AtlanticJeunhomme, Gwenaëlle C January 1999 (has links)
Thesis (M.S.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1999. / Includes bibliographcial references (p. 117-118). / This thesis describes an attempt to build a box model of the circulation in the eastern North Atlantic and to use it with transient tracer data to infere rates of ventilation in the subtropcial thermocline. The starting point is the analysis of former studies on box models, transient tracer data and the combination of both. The advantages and pitfalls associated with the tracer age approach on the one hand and the inventory approach on the other hand are weighed and the choice set upon the inventory approach is justified. Next the data used is presented and processed, and the results are compared with the known circulation patterns of the basin. The estimates computed fall in the expected and acceptable range. The uncertainties, in particular on the boundary conditions, are acknowledged to be a crucial factor on the following analysis yet only rough estimates can be produced. In particular, the geostrophic velocities at the boundaries can only be determined lest an unknown constant. No internally consistent model can be found that satisfies the linear conservation balances, geostrophy and steadiness assumptions and the boundary conditions imposed. The circulation generated only satisfies mass balance and the boundary conditions to a certain extent. Experience suggests that there are incompatibilities among the various constraints. Two different numerical methods fail to find an acceptable solution. Using the default circulation obtained, the forward problem is formulated and investigated. The resulting tracer distribution and time history is incompatible with the observed field. As a consequence, an attempt is made at the inverse problem in the hope that relaxation of the boundary conditions will provide some insight into the general failure of the model. As there appears to be no feasible solution though, the circulation is further inspected and it is concluded that given its flaws, no boundary condition will be able to generate a tracer field even in partial agreement with the observations. It is finally concluded that transient tracers can be used to dismiss grossly wrong circulation models. / by Gwenaëlle C. Jeunhomme. / M.S.
|
209 |
A 2 1/2 dimensional thermohaline circulation model with boundary mixing / Two and one-half dimensional thermohaline circulation model with boundary mixingRu, Hua January 2000 (has links)
Thesis (S.M.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2000. / Includes bibliographical references (leaves 78-82). / A simple quasi-two dimensional dynamical model of Thermohaline circulation (THC) is developed, assuming that the mixing only occurs near western and eastern boundary layers. When the surface density is prescribed, the climatically important quantities, such as the strength of overturning and meridional heat transport, are related to the zonal integral over the vigorously mixing regions and scaled as (KvΔx)2/3. The numerical results suggest that the density difference between eastern and western boundaries play an important role in the meridional overturning. The eastern boundary is characterized by the upwelling on top of downwelling. The western boundary layer is featured by the universal upwelling. The inefficiency of diffusion heat transport accounts for the narrowness of sinking region and shallowness of overturning cell in one-hemisphere. The experiments with other surface boundary conditions are also explored. The circulation patterns obtained are similar under various surface temperature distributions, suggesting these are very robust features of THC. The role of boundary mixing is further explored in global ocean. The 2 1/2 dynamical model is extended to two-hemisphere ocean. Additional dynamics such as Rayleigh friction and abyssal water properties are taken into account. A set of complicated governing equations are derived and numerically solved to obtain steady state solution. The basic circulation features are revealed in our dynamical model. An equtorially asymmetric meridional circulation is observed due to small perturbation at the surface temperature in the high latitude. The density differences between eastern and western boundaries are distinct in both hemispheres. This is achieved during the spin-up process. Although the dynamical model results agree well with OGCM results in one-hemisphere, several important dynamics are lacking and exposed in two-hemisphere experiments. We need to consider horizontal advection terms which will effectively advect positive density anomalies across the equator and form the deep water for the entire system. / by Hua Ru. / S.M.
|
210 |
The effect of stratification on wind-driven, cross-shelf circulation and transport on the inner continental shelfHorwitz, Rachel Mandy January 2012 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2012. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 209-215). / Observations from a three-year field program on the inner shelf south of Martha's Vineyard, MA and a numerical model are used to describe the effect of stratification on inner shelf circulation, transport, and sediment resuspension height. Thermal stratification above the bottom mixed layer is shown to cap the height to which sediment is resuspended. Stratification increases the transport driven by cross-shelf wind stresses, and this effect is larger in the response to offshore winds than onshore winds. However, a one-dimensional view of the dynamics is not sufficient to explain the relationship between circulation and stratification. An idealized, cross-shelf transect in a numerical model (ROMS) is used to isolate the effects of stratification, wind stress magnitude, surface heat flux, cross-shelf density gradient, and wind direction on the inner shelf response to the cross-shelf component of the wind stress. In well mixed and weakly stratified conditions, the cross-shelf density gradient can be used to predict the transport efficiency of the cross-shelf wind stress. In stratified conditions, the presence of an along-shelf wind stress component makes the inner shelf response to cross-shelf wind stress strongly asymmetric. / by Rachel Mandy Horwitz. / Ph.D.
|
Page generated in 0.1072 seconds