• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Underwater audio event detection, identification and classification framework (AQUA)

Cipli, Gorkem 22 December 2016 (has links)
An audio event detection and classification framework (AQUA) is developed for the North Pacific underwater acoustic research community. AQUA has been developed, tested, and verified on Ocean Networks Canada (ONC) hydrophone data. Ocean Networks Canada is an non-governmental organization collecting underwater passive acoustic data. AQUA enables the processing of a large acoustic database that grows at a rate of 5 GB per day. Novel algorithms to overcome challenges such as activity detection in broadband non-Gaussian type noise have achieved accurate and high classification rates. The main AQUA modules are blind activity detector, denoiser and classifier. The AQUA algorithms yield promising classification results with accurate time stamps. / Graduate
2

Topographic Effects on Internal Waves at Barkley Canyon

Anstey, Kurtis 31 August 2022 (has links)
Submarine canyons incising the continental shelf and slope are hot spots for topography-internal wave interactions, with elevated dissipation and mixing contributing to regional transport and biological productivity. At two Barkley Canyon sites (the continental slope below the shelf-break, and deep within the canyon), four overlapping years of horizontal velocity time-series data are used to examine the effects of irregular topography on the internal wave field. Mean currents are topographically guided at both sites, and in the canyon there is an inter-annually consistent, periodic (about a week) up-canyon flow (-700 to -900 m) above a near-bottom down-canyon layer. There is elevation of internal wave energy near topography, up to a factor of 10, 130 m above the slope, and up to a factor of 100, 230 m above the canyon bottom. All bands display weak inter-annual variability, but significant seasonality. Sub-diurnal and diurnal flows are presumably sub-inertially trapped along topography, and the diurnal band appears to be forced locally (barotropically). Both sites have high near-inertial energy. At the slope site, near-inertial energy is attenuated with depth, while in the canyon it is amplified near the bottom. Both sites show intermittent near-inertial forcing associated with wind events, downward propagation of high-mode internal waves, and the seasonal mixed-layer depth, though fewer events are observed in the canyon. Free semidiurnal internal tides are focused and reflected near critical shelf-break and canyon floor topography, and appear to experience both local and remote (baroclinic) forcing. The high-frequency internal wave continuum has enhanced energy near bottom at both sites (up to 7 times the open-ocean Garrett-Munk spectrum), and inferred dissipation rates increasing from a background of less than 10^-9 W kg^-1 and reaching 10^-7 W kg^-1 near topography. Dissipation is most strongly correlated with the semidiurnal (M2) constituent at both sites, with secondary contributions from the sub-diurnal (Sub_K1) band on the slope, and the near-inertial (NI) band in the canyon. Power laws for these dependencies are dissipation ~ M2^0.83 + Sub_K1^0.59 at the slope, and dissipation ~ M2^1.47 + NI^0.24 in the canyon. There is evidence in spectra of a near-buoyancy frequency build-up of energy correlated with high-frequency continuum variability, with a power law fit of 'shoulder' power ~ dissipation^0.34 that is independent of site topography. Though some general results are expected from observations at other slope and canyon sites, the greater temporal extent of these data provide a uniquely long-term evaluation of such processes. / Graduate
3

Influence of seasonally variable hypoxia on epibenthic communities in a coastal ecosystem, British Columbia, Canada

Chu, Jackson Wing Four 25 April 2016 (has links)
Natural cycles of environmental variability and long-term deoxygenation in the ocean impose oxygen deficiency (hypoxia) on marine communities. My research exploits a naturally occurring hypoxia cycle in Saanich Inlet, British Columbia, Canada where I combined spatial surveys with remotely operated vehicles, ecological time-series from the subsea cabled observatory VENUS, and lab-based respirometry experiments to examine the influence of seasonally variable oxygen conditions on epibenthic communities. In situ oxygen thresholds established for dozens of fish and invertebrate species in this system show they naturally occur in lower oxygen levels than what general lethal and sublethal thresholds would predict. Expansion of hypoxic waters induced a loss of community structure which was previously characterized by disjunct distributions among species. Communities in variable hypoxia also have scale-dependent structure across a range of time scales but are primarily synchronized to a seasonal oscillation between two phases. Time-series revealed timing of diurnal movement in the slender sole Lyopsetta exilis and reproductive behavior of squat lobster Munida quadrispina in the hypoxia cycle. Hypoxia-induced mortality of sessile species slowed the rate of community recovery after deoxygenation. The 10-year oxygen time-series from VENUS, revealed a significant increase in the annual low-oxygen period in Saanich Inlet and that deoxygenation has occurred in this system since 2006. Differences in the critical oxygen thresholds (O2crit) and standard metabolic rates of key species (spot prawn Pandalus platyceros, slender sole, and squat lobster) determined the lowest in situ oxygen at which populations occurred and explained disproportionate shifts in distributions and community respiration. Finally, a meta-analysis on global O2crit reported for crustaceans showed that hypoxia tolerance differs among major ocean basins. Long-term trends of deoxygenation suggest a future regime shift may occur when the duration at which a system remains below critical oxygen levels exceeds the time needed for communities to recover. Species-specific traits will determine the critical threshold and the nature of the community response in systems influenced by variable states of oxygen deficiency. However, oceanographic and evolutionary history provides context when determining the regional response of benthic communities influenced by rapidly changing environments. / Graduate / 0329 / 0416 / 0433 / jwfchu@gmail.com

Page generated in 0.0613 seconds