• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 631
  • 7
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 654
  • 568
  • 566
  • 566
  • 548
  • 548
  • 448
  • 374
  • 322
  • 318
  • 316
  • 316
  • 313
  • 295
  • 286
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

A planned approach to high collision risk area

Li, John Zhang. January 2020 (has links)
Thesis: S.M., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), September, 2020 / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references (pages 103-107). / This thesis examines the transition of a vessel from the open ocean, where collisions are rare, to a high risk and heavy traffic area such as a Traffic Separation Scheme (TSS). Previous autonomy approaches generally view path planning and collision avoidance as two separate functions, i.e. a vessel will follow the planned path until conditions are met for collision avoidance algorithms to take over. Here an intermediate phase is proposed with the goal of adjusting the time of arrival to a high vessel density area so that the risk of collision is reduced. A general algorithm that calculates maximum future traffic density for all choices in the speed domain is proposed and implemented as a MOOS-IvP behavior. This behavior gives the vessel awareness of future collision risks and aids the collision avoidance process. This new approach improves the safety of the vessel by reducing the number of risky encounters that will likely require the vessel to maneuver for safety. / by John Zhang Li. / S.M. / S.M. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution)
242

High resolution sedimentary archives of past millennium hurricane activity in the Bahama Archipelago

Wallace, Elizabeth Jane. January 2020 (has links)
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2020 / Cataloged from student-submitted PDF of thesis. / Includes bibliographical references (pages 211-226). / Atlantic hurricanes threaten growing coastal populations along the U.S. coastline and in the Caribbean islands. Unfortunately, little is known about the forces that alter hurricane activity on multi-decadal to centennial timescales. This thesis uses proxy development and proxy-model integration to constrain the spatiotemporal variability in hurricane activity in the Bahama Archipelago over the past millennium. I present annually-resolved archives of storm activity stretching over the past 1000 to 1500 years in sediment cores from blue holes on three islands in the Bahama Archipelago: South Andros Island, Long Island, and Middle Caicos Island. I explore the sensitivity of each site to coarse-grained sediment deposition for modern storms. I find that the local geomorphologic conditions and the angle of approach and size of passing storms play a more important role in inducing coarse-grained sediment transport than storm intensity. / All three paleorecords capture multi-decadal and longer periods of elevated hurricane activity over the past millennium. Dramatic differences between these records suggest localized controls on the hurricane patterns observed by each island. Thus, compiling the records from this thesis together more accurately captures regional variations in hurricane strikes. Integrating our new Bahama Archipelago compilation with compiled paleohurricane records from the U.S. coastline indicates shifting patterns of hurricane activity over the past millennium between the Gulf Coast and the Bahama Archipelago/New England. I attribute these shifting storm patterns to changes in local environmental conditions and/or large-scale variations in hurricane tracks. Finally, I address whether variability in hurricane strikes observed in Bahamian paleohurricane records is related to climate or random variability. / Using a large suite of synthetic storms run over past millennium climate, I generate 1000 pseudo paleohurricane records containing centennial-scale signal like our proxy reconstructions. However, the signal observed in any individual record of paleohurricane activity from the Bahama Archipelago is driven more by random variability in hurricane tracks than by climate. This thesis lays the groundwork for creating high-resolution paleohurricane records from coastal karst basins and using hurricane models to inform our interpretations of these records. / by Elizabeth Jane Wallace. / Ph. D. / Ph.D. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution)
243

Automated open circuit scuba diver detection with low cost passive sonar and machine learning

Cole, Andrew M.,Lieutenant Commander. January 2019 (has links)
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Thesis: S.M., Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2019 / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references (pages 129-132). / This thesis evaluates automated open-circuit scuba diver detection using low-cost passive sonar and machine learning. Previous automated passive sonar scuba diver detection systems required matching the frequency of diver breathing transients to that of an assumed diver breathing frequency. Earlier work required prior knowledge of both the number of divers and their breathing rate. Here an image processing approach is used for automated diver detection by implementing a deep convolutional neural network. Image processing was chosen because it is a proven method for sonar classification by trained human operators. The system described here is able to detect a scuba diver from a single acoustic emission from the diver. Twenty dives were conducted in support of this work at the WHOI pier from October 2018 to February 2019. The system, when compared to a trained human operator, correctly classified approximately 93% of the data. When sequential processing techniques were applied, system accuracy rose to 97%. This demonstrated that a combination of low-cost, passive sonar and a properly tuned convolutional neural network can detect divers in a noisy environment to a range of at least 12.49 m (50 feet). / by Andrew M. Cole. / S.M. / S.M. Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution)
244

Characterizing cobalamin cycling by Antarctic marine microbes across multiple scales

Rao, Deepa,Ph.D.Massachusetts Institute of Technology. January 2020 (has links)
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), May, 2020 / Cataloged from the official PDF of thesis. / Includes bibliographical references (pages 161-183). / Highly productive marine microbial communities in the coastal Southern Ocean sustain the broader Antarctic ecosystem and play a key role in Earth's climate via the biological pump. Regional phytoplankton growth is primarily limited by iron and co-limited by cobalamin (vitamin B₁₂), a trace cobalt-containing organometallic compound only synthesized by some bacteria and archaea. These micronutrients impact primary production and the microbial ecology of the two keystone phytoplankton types: diatoms and Phaeocystis antarctica. This thesis investigates microbe-driven cobalamin cycling in Antarctic seas across multiple spatiotemporal scales. I conducted laboratory culture experiments with complementary proteomics and transcriptomics to investigate the B₁₂-ecophysiology of P. antarctica strain CCMP 1871 morphotypes under iron-B₁₂ co-limitation. / We observed colony formation under higher iron treatments, and a facultative use of B₁₂-dependent (MetH) and B₁₂-independent (MetE) methionine synthase isoforms in response to vitamin availability, demonstrating that this strain is not B₁₂-auxotrophic. Through comparative 'omics, we identified a putative MetE protein in P. antarctica abundant under low B₁₂, which is also found in other marine microbes. Across Antarctic seas, community-scale cobalt and B₁₂ uptake rates were measured by ⁵⁷Co radiotracer incubation experiments and integrated with hydrographic and phytoplankton pigment data. I observed significant correlations between uptake fluxes and environmental variables, providing evidence for predominantly diatom-driven uptake of these micronutrients in warmer, fresher surface waters with notable regional differences. / To date, this work is the most comprehensive attempt to elucidate the processes governing the co-cycling of cobalt and B₁₂ in any marine system. At the ecosystem-scale, I developed and tested a hypothesis of micronutrient-driven community dynamics through a trait-based model with cross-feeding interactions. The model demonstrates how the observed seasonal succession of springtime P. antarctica from solitary to colonial cells, bacterioplankton, and summertime diatoms may be explained by the microbial cycling of iron, dissolved organic carbon, and B₁₂. Overall, this dissertation provides new information about the micronutrient-driven ecology of Antarctic marine microbes and adds to our understanding of the interconnections between organismal life cycle, trace metals, and trace organics in marine environments. / by Deepa Rao. / Ph. D. / Ph.D. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution)
245

Multiple equilibria and low-frequency variability of wind-driven ocean models

Primeau, François W. (François William), 1966- January 1998 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1998. / Includes bibliographical references (leaves 156-158). / by François W. Primeau. / Ph.D.
246

Impacts of double-diffusive processes on the thermohaline circulation

Zhang, Jubao January 1998 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1998. / Includes bibliographical references (leaves 150-157). / Double-diffusive processes are studied and parameterized, and their impacts on the oceanic thermohaline circulation are investigated by single-hemisphere numerical models and scaling analysis. Scaling analysis on the thermohaline circulation has been done under three types of surface boundary conditions. (a) Under "relaxation" conditions, there is a two-thirds power law dependence of the meridional overturning rate (and the poleward heat transport) on the diapycnal diffusivity. For any given external forcing, there is only one equilibrium state for the thermohaline circulation. (b) Under "flux" boundary conditions, there is a half power law dependence of the meridional overturning rate on the diapycnal diffusivity. Only one mode is possible for given external forcing. (c) Under "mixed" boundary conditions, multiple equilibria become possible. For given thermal forcing, the existence of multiple equilibria depends on the relative contributions of diapycnal diffusivity and the hydrologic forcing. Numerical experiments are implemented to test the above scaling arguments. Consistent results have been obtained under the above three types of boundary conditions. These provide a basis for understanding how the thermohaline circulation depends on the diapycnal diffusivity, which we know is influenced by the double-diffusive processes of "salt fingering" and "diffusive layering" in some parts of the ocean. In order to examine this issue, the double-diffusive processes are parameterized by diapycnal eddy diffusivities for heat and salt that are different and depend on the local density ratio, ... A background diffusivity is applied to represent turbulent mixing in the stratified environment. The implementation of this double-diffusive - parameterization in numerical models has significant impacts on the thermohaline circulation. (a) Under "relaxation" boundary conditions, the meridional overturning rate and the poleward heat transport are reduced, and water mass properties are also changed. Similar results are obtained under "flux" boundary conditions. (b) Under "mixed" boundary conditions, the critical freshwater flux for the existence of the thermal mode becomes smaller with the double-diffusive parameterization. The extent to which the thermohaline circulation is affected by double-diffusive processes depends on the magnitude of the freshwater forcing. / by Jubao Zhang. / Ph.D.
247

Modeling convection in the Greenland Sea

Bhushan, Vikas January 1998 (has links)
Thesis (S.M.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1998. / Includes bibliographical references (leaves 155-161). / A detailed examination of the development of a deep convection event observed in the Greenland Sea in 1988-89 is carried out through a combination of modeling, scale estimates, and data analysis. We develop a prognostic one-dimensional mixed layer model which is coupled to a thermodynamic ice model. Our model contains a representation of the lowest order boundary layer dynamics and adjustable coupling strengths between the mixed layer, ice, and atmosphere. We find that the model evolution is not very sensitive to the strength of the coupling between the ice and the mixed layer sufficiently far away from the limits of zero and infinite coupling; we interpret this result in physical terms. Further, we derive an analytical expression which provides a scale estimate of the rate of salinification of the mixed layer during the ice-covered preconditioning period as a function of the rate of ice advection. We also derive an estimate for the rate of the mixed layer deepening which includes ice effects. Based on these scale estimates and model simulations, we confirm that brine rejection and advection of ice out of the convection area were essential ingredients during the preconditioning process. We also demonstrate that an observed rise in the air temperature starting in late December 1988 followed by a period of moderately cold ~ -10*C temperatures was key to the development of the observed convection event. Finally, we show that haline driven deep convection underneath an ice cover is possible, but unlikely to occur in the Greenland Sea. On the basis of these results, we develop a coherent picture of the evolution of the convection process which is more detailed than that presented in any previous work. We also comment on the likelihood that deep convection occurred in the Greenland Sea in the past two decades from an examination of historical data, and relate these findings to what is known about the inter-annual variability of convective activity in the Greenland Sea / by Vikas Bhushan. / S.M.
248

Generation and maintenance of recirculations by Gulf Stream instabilities

Beliakova, Natalia Yurievna, 1967- January 1999 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 1999. / Includes bibliographical references (leaves 220-224). / This thesis studies the problems of generation and maintenance of recirculations by Gulf Stream instabilities. Observations show that the horizontal structure of the jet and its recirculations suffer significant changes in time. Here, the role of internal dynamics of the jet is isolated as one of the possible sources of such variability, and the differences between barotropic and baroclinic instabilities are investigated. The problem of recirculation development is considered in a framework of a free spin down of the 2-layer and the lI-layer, zonally symmetric, quasi-geostrophic jets. Linear stability analysis shows that in strongly baroclinic basic flows, eddies are capable of driving recirculations in the lower layer through the residual meridional circulation. In strongly barotropic jets, the linearly most unstable wave simply diffuses the jet. Nonlinear stability analysis indicates that recirculations are robust features of the 2-layer model. The strength of recirculations is a function of the model's parameters. It increases with a decrease in the value of the nondimensional # due to potential vorticity homogenization constrained by enstrophy conservation. The recirculation strength is a non-monotonic function of the baroclinic velocity parameter; it is the strongest for strongly baroclinic basic flows, weakest for flows with intermediate baroclinic structure and of medium strength for strongly barotropic basic flows. Such non-monotonic behavior is the result of two different processes responsible for the recirculation development: linear eddy-mean flow interactions for strongly baroclinic basic flows and strongly nonlinear eddy-eddy and eddy-mean flow interaction for strongly barotropic flows. In the case of the reduced-gravity model, recirculations develop only for infinite deformation raduis. Basic flows with finite deformation radius are only weakly supercritical and therefore produced negligible recirculations after equilibration. The problem of maintenance of the recirculations is coupled to the questions of existence of low frequency variability and of multiple dynamical regimes of a system consisting of a quasi-geostrophic jet and its recirculations. The problem is studied in a framework of a 2-layer or a reduced-gravity colliding jets model which has no windforcing. Instead, it is forced by inflows and outflows through the open boundaries. Only the western boundary of the domain is closed, and a free slip boundary condition is used there. The results of the numerical experiments show that when only the mechanism of barotropic instability is present, the model has two energy states for a wide range of interfacial friction coefficients. The high energy state is characterized by well-developed recirculations and displays strong variability associated with either large recirculating gyres and a weak eddy field or small recirculations and a strong eddy field. The low energy state is characterized by large meridional excursions in the separation point and large amplitude, westward propagating meanders that produce strong rings after interacting with the western wall. For physically relevant bottom friction values, the presence of baroclinic instability in the recirculation regions of the 2-layer model allows for a unique dynamical regime characterized by well-developed recirculations in both layers. The low-frequency variability associated with the regime is weak and is related to meridional shifts in the position of the jet, to wrapping of the recirculations around each other, and to pulsations in their zonal extent. / by Natalia Yurievna Beliakova. / Ph.D.
249

Large scale oceanic circulation and fluxes of freshwater, heat, nutrients and oxygen

Ganachaud, Alexandre Similien, 1970- January 2000 (has links)
Thesis (Sc. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 2000. / Includes bibliographical references (p. 250-266). / A new, global inversion is used to estimate the large scale oceanic circulation based on the World Ocean Circulation Experiment and Java Australia Dynamic Experiment hydrographic data. A linear inverse "box" model is used to combine consistently the transoceanic sections. The circulation is geostrophic with an Ekman layer at the surface and oceanic layers defined by neutral surfaces. Near-conservation of mass, salt and top-to-bottom silica is required and, in addition, heat and the phosphate-oxygen combination (170[PO 4]+[0 2]) are conserved in layers that are not in contact with the surface. A globally-consistent solution is obtained for a depth-independent adjustment to the thermal wind field, freshwater flux divergences, the Ekman transport, and the advective and diffusive dianeutral fluxes between layers. A detailed error budget permits calculation of statistical uncertainties, taking into account both the non-resolved part of the solution and the systematic errors due to the temporal oceanic variability. The estimated water mass transports during the WOCE period (1985-1996) are generally similar to previous published estimates. However, important differences are found. In particular, the inflow of bottom waters into the Pacific Ocean is smaller than in most previous estimates. Utilization of property anomaly conservation constraints allows the estimation of significant dianeutral diffusivities in deep layers, with a global average of 3 ± 1cm 2 s-1 north of 30'S. Dianeutral transfers indicate that about 20 Sv of bottom water is formed in the Southern Ocean. Significant oceanatmosphere heat fluxes are found, with a global heating of 2.3 ± 0.4 PW in the tropical band and a corresponding cooling at high latitudes. The signature of a large-scale average export production is found for nutrients in several temperate regions. Despite the large uncertainties, the production magnitudes are consistent with independent measurements from sediment traps and isotopic data. Net nutrient sources or sinks are found in several regions, suggesting either transport of dissolved organic matter or a seasonal alias. Oxygen indicates large exchanges with the atmosphere, with intake at high latitudes and outgassing/remineralization at low latitudes. / by Alexandre Similien Ganachaud. / Sc.D.
250

Cooling and internal waves on the Continental Shelf

Pringle, James M January 1998 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1998. / Includes bibliographical references. / by James Maxwell Pringle. / Ph.D.

Page generated in 0.0425 seconds