Spelling suggestions: "subject:"ractopamine receptors""
1 |
Application de la démarche de drug-design pour la conception de nouveaux médicaments vétérinaires contre le parasite Varroa destructor (Acari ˸ Varroidae) / Application of the drug-design approach for the design of new veterinary drugs against the parasite Varroa destructor (Acari ˸ Varroidae)Riva, Clemence 14 December 2017 (has links)
L’acarien Varroa destructor est l’un des principaux responsables de l’effondrement des colonies d’abeilles domestique Apis mellifera. L’arsenal thérapeutique disponible pour lutter contre ce parasite ubiquiste apparait insuffisant à ce jour. Dans le cadre de cette thèse, la démarche de drug design, généralement utilisée en santé humaine, a été appliquée pour le développement de nouveaux médicaments vétérinaire à usage varroacide. Les travaux de cette thèse se sont focalisés sur deux cibles du système nerveux : l’acétylcholinestérase et les récepteurs à l’octopamine. Ces deux cibles ont déjà montré leur intérêt varroacide, notamment au travers des médicaments contenant du coumaphos ou de l’amitraze. Concernant l’acétylcholinestérase, un criblage fait avec le modèle 3D de l’enzyme, construit par homologie de séquences, a permis d’identifier deux composés de la chimiothèque du CERMN. Nous avons également exploré le potentiel varroacide d’acaricides de la famille des carbamates, démontrant l’intérêt du pirimicarbe comme varroacide. Concernant l’octopamine, l’étude de quatre dérivés de l’amitraze a montré l’intérêt de l’un d’entre eux. Un criblage par similarité de structure avec ce dérivé a mis en exergue une molécule issue de la chimiothèque du CERMN. Toutes les molécules pointées par ces travaux de thèse montrent de bons résultats lors de tests in vitro ou in vivo. Toutefois, afin de minimiser le risque pour l’abeille et maximiser l’efficacité anti-varroa, ces leads doivent être optimisés avant d’être ajouté à l’arsenal des médicaments varroacides. / The mite Varroa destructor is one of the main contributors to the collapse of honey bee colonies Apis mellifera. The therapeutic arsenal available against this ubiquitous parasite appears insufficient to date. In this thesis, the drug design approach, generally used in human health, was applied to the development of new varroacide veterinary drugs.The works of this thesis focused on two nervous system targets: acetylcholinesterase and octopamine receptors. These two targets have already shown their varroacide interest, especially through drugs containing coumaphos or amitraz. Regarding acetylcholinesterase, a screening made on the 3D model of the enzyme, built by sequence homology, allowed to identify two compounds from the CERMN compound library. We also explored the varroacide potential of carbamate acaricides, demonstrating the interest of pirimicarb as a varroacide. Regarding octopamine, the study of four derivatives of amitraz has shown the interest of one of them. Structural similarity screening with this derivative highlighted one hit from the CERMN compound library. All molecules pointed out by these thesis works show good results during in vitro or in vivo tests. However, to minimize the risk to honey bees and maximize their anti-varroa efficiency, these leads need to be optimized before being added to the arsenal of varroacide drugs.
|
2 |
The octopaminergic modulatory circuitry of the Drosophila larval mushroom body calyxWong, Jin Yan Hilary January 2019 (has links)
How are neuromodulatory networks organised to adapt sensory discrimination for different contexts? I hypothesised that neurons within a sensory circuit express different neuromodulatory receptors for differential modulation. Here I aimed to use the simple and genetically amenable Drosophila larval Mushroom Body (MB) calyx, a higher order processing area involved in learned odour discrimination, as a model to map octopamine (OA) neuromodulatory circuitry. I first identified olfactory projection neurons (PNs), a GABAergic feedback neuron and cholinergic extrinsic neurons as putative postsynaptic partners to OA neurons in the MB calyx using GFP reconstitution across synaptic partners. Next, I used novel EGFP-tagged OA receptors generated from recombination-mediated cassette exchange with MiMIC insertions in receptor genes to visualise endogenous expression patterns of OA receptors. Most notably, this is the first report of α2-adrenergic-like OA receptor localisation in any insect. For the first time, I showed that the α1-adrenergic-like OAMB localised to PN presynaptic terminals in the calyx; while Octβ1R localised diffusely in the calyx, resembling the innervation pattern of MB neuron dendrites. I detected EGFP-tagged Octα2R and Octβ2R in some PN cell bodies but not in neuron terminals - suggesting that Octα2R and Octβ2R may be expressed in some PNs, provided the misfolded fusion proteins are retained in the cell bodies of the neurons they are normally expressed in. Furthermore, I found that Octα2R and GABAAR fusion proteins localised to OA cell bodies but not to neuronal terminals, suggesting that OA neurons are subjected to inhibition, again given that these are not artefacts of the fusion proteins. To obtain tools to study OA modulation in the larval calyx, I then confirmed the expression patterns of driver lines that more specifically labelled calyx-innervating OA and extrinsic neurons, and tested the efficacy of three OAMB receptor knockdown lines. This initial attempt of mapping OA receptors, while subjected to further verification and development, is consistent with my hypothesis that a single neuromodulatory source can regulate multiple neuronal types in the same circuit through the distribution of different types of neuromodulatory receptors. This provides a new perspective in how the anatomical organisation of neuromodulation within a sensory network may translate to flexible outputs.
|
Page generated in 0.0779 seconds